TY - JOUR
T1 - Antibody conjugated PLGA nanoparticles for targeted delivery of paclitaxel palmitate
T2 - Efficacy and biofate in a lung cancer mouse model
AU - Karra, Nour
AU - Nassar, Taher
AU - Ripin, Alina Nemirovski
AU - Schwob, Ouri
AU - Borlak, Jürgen
AU - Benita, Simon
PY - 2013/12/20
Y1 - 2013/12/20
N2 - Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over-expressed in most cases of non-small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab-conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over-expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549-luc-C8 lung tumors is shown using non-invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non-targeted drug solution, drug-loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC-MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors. Anchoring of amphiphilic oleyl cysteineamide linker molecules at the nanosphere interface allows thiol surface functionalization of PLGA nanoparticles (NPs) and efficient covalent conjugation to maleimide-activated cetuximab. Cetuximab immunonanoparticles (INPs) enable specific binding to the epidermal growth factor receptor on A549 lung cancer cells, eliciting improved tumor growth inhibition over the non-targeted drug solution and NPs.
AB - Aberrant signaling of the epidermal growth factor receptor (EGFR) is common to a variety of human cancers and is also found to be over-expressed in most cases of non-small cell lung cancer. For the development of a molecularly targeted therapy, cetuximab-conjugated nanoparticles (immunonanoparticles, INPs) are designed and loaded with the lipophilic paclitaxel palmitate (pcpl) prodrug. Oleyl cysteineamide (OCA) is synthesized whereby its amphiphilic nature enables interfacial anchoring and thiol surface functionalization of PLGA NPs, facilitating bioconjugation to cetuximab by thioether bonds. It is demonstrated that the in vitro targeting efficiency and improved cellular internalization and cytotoxicity of this targeted delivery system in lung cancer cells over-expressing EGFR. A quantitative measure of the high binding affinity of INPs to EGFR is demonstrated using surface plasmon resonance. In vivo tolerability and enhanced efficacy of cetuximab pcpl INPs in a metastatic lung cancer model are reported. Its therapeutic efficacy in A549-luc-C8 lung tumors is shown using non-invasive bioluminescent imaging. Intravenous administration of cetuximab pcpl INPs to mice results in significantly higher inhibition of tumor growth and increased survival rates as compared to the non-targeted drug solution, drug-loaded nanoparticles or blank INPs. Pharmacokinetics and organ biodistribution of the prodrug and parent drug are evaluated by LC-MS/MS in lung tumor bearing mice. No enhanced total accumulation of nanoparticles or INPs is found at the tumor tissue. However, persistent pcpl levels with sustained conversion and release of paclitaxel are observed for the encapsulated prodrug possibly suggesting the formation of a drug reservoir. The overall results indicate the potential of this promising targeted platform for the improved treatment of lung cancer and other EGFR positive tumors. Anchoring of amphiphilic oleyl cysteineamide linker molecules at the nanosphere interface allows thiol surface functionalization of PLGA nanoparticles (NPs) and efficient covalent conjugation to maleimide-activated cetuximab. Cetuximab immunonanoparticles (INPs) enable specific binding to the epidermal growth factor receptor on A549 lung cancer cells, eliciting improved tumor growth inhibition over the non-targeted drug solution and NPs.
KW - PLGA nanoparticles
KW - biodistribution
KW - conjugation
KW - oleyl cysteineamide
KW - paclitaxel-palmitate
UR - http://www.scopus.com/inward/record.url?scp=84890452320&partnerID=8YFLogxK
U2 - 10.1002/smll.201301417
DO - 10.1002/smll.201301417
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 23873835
AN - SCOPUS:84890452320
SN - 1613-6810
VL - 9
SP - 4221
EP - 4236
JO - Small
JF - Small
IS - 24
ER -