TY - JOUR
T1 - Anticonvulsant profile and teratogenicity of N-methyl-tetramethylcyclopropyl carboxamide
T2 - A new antiepileptic drug
AU - Isoherranen, Nina
AU - White, H. Steve
AU - Finnell, Richard H.
AU - Yagen, Boris
AU - Woodhead, José H.
AU - Bennett, Gregory D.
AU - Wilcox, Karen S.
AU - Barton, Matthew E.
AU - Bialer, Meir
PY - 2002
Y1 - 2002
N2 - Purpose: The studies presented here represent our efforts to investigate the anticonvulsant activity of N-methyl-tetramethylcyclopropyl carboxamide (M-TMCD) and its metabolite tetramethylcyclopropyl carboxamide (TMCD) in various animal (rodent) models of human epilepsy, and to evaluate their ability to induce neural tube defects (NTDs) and neurotoxicity. Methods: The anticonvulsant activity of M-TMCD and TMCD was determined after intraperitoneal (i.p.) administration to CF#1 mice, and either oral or i.p. administration to Sprague-Dawley rats. The ability of M-TMCD and TMCD to block electrical-, chemical-, or sensory-induced seizures was examined in eight animal models of epilepsy. The plasma and brain concentrations of M-TMCD and TMCD were determined in the CF#1 mice after i.p. administration. The induction of NTDs by M-TMCD and TMCD was evaluated after a single i.p. administration at day 8.5 of gestation in a highly inbred mouse strain (SWV) that is susceptible to valproic acid-induced neural tube defects. Results: In mice, M-TMCD afforded protection against maximal electroshock (MES)-induced, pentylenetetrazol (Metrazol)-induced, and bicuculline-induced seizures, as well as against 6-Hz "psychomotor" seizures and sound-induced seizures with ED50 values of 99, 39, 81, 51, and 10 mg/kg, respectively. In rats, M-TMCD effectively prevented MES- and Metrazol-induced seizures and secondarily generalized seizures in hippocampal kindled rats (ED50 values of 82, 45, and 39 mg/kg, respectively). Unlike M-TMCD, TMCD was active only against Metrazol-induced seizures in mice and rats (ED50 values of 57 and 52 mg/kg, respectively). Neither M-TMCD nor TMCD was found to induce NTDs in SWV mice. Conclusions: The results obtained in this study show that M-TMCD is a broad-spectrum anticonvulsant drug that does not induce NTDs and support additional studies to evaluate its full therapeutic potential.
AB - Purpose: The studies presented here represent our efforts to investigate the anticonvulsant activity of N-methyl-tetramethylcyclopropyl carboxamide (M-TMCD) and its metabolite tetramethylcyclopropyl carboxamide (TMCD) in various animal (rodent) models of human epilepsy, and to evaluate their ability to induce neural tube defects (NTDs) and neurotoxicity. Methods: The anticonvulsant activity of M-TMCD and TMCD was determined after intraperitoneal (i.p.) administration to CF#1 mice, and either oral or i.p. administration to Sprague-Dawley rats. The ability of M-TMCD and TMCD to block electrical-, chemical-, or sensory-induced seizures was examined in eight animal models of epilepsy. The plasma and brain concentrations of M-TMCD and TMCD were determined in the CF#1 mice after i.p. administration. The induction of NTDs by M-TMCD and TMCD was evaluated after a single i.p. administration at day 8.5 of gestation in a highly inbred mouse strain (SWV) that is susceptible to valproic acid-induced neural tube defects. Results: In mice, M-TMCD afforded protection against maximal electroshock (MES)-induced, pentylenetetrazol (Metrazol)-induced, and bicuculline-induced seizures, as well as against 6-Hz "psychomotor" seizures and sound-induced seizures with ED50 values of 99, 39, 81, 51, and 10 mg/kg, respectively. In rats, M-TMCD effectively prevented MES- and Metrazol-induced seizures and secondarily generalized seizures in hippocampal kindled rats (ED50 values of 82, 45, and 39 mg/kg, respectively). Unlike M-TMCD, TMCD was active only against Metrazol-induced seizures in mice and rats (ED50 values of 57 and 52 mg/kg, respectively). Neither M-TMCD nor TMCD was found to induce NTDs in SWV mice. Conclusions: The results obtained in this study show that M-TMCD is a broad-spectrum anticonvulsant drug that does not induce NTDs and support additional studies to evaluate its full therapeutic potential.
KW - Animal model
KW - Antiepileptic activity
KW - Central nervous system (CNS)-active cyclopropyl valproylamide analogue
KW - Neural tube defects
UR - http://www.scopus.com/inward/record.url?scp=0036126054&partnerID=8YFLogxK
U2 - 10.1046/j.1528-1157.2002.25801.x
DO - 10.1046/j.1528-1157.2002.25801.x
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 11903457
AN - SCOPUS:0036126054
SN - 0013-9580
VL - 43
SP - 115
EP - 126
JO - Epilepsia
JF - Epilepsia
IS - 2
ER -