TY - JOUR
T1 - Antimicrobial random peptide cocktails
T2 - A new approach to fight pathogenic bacteria
AU - Amso, Zaid
AU - Hayouka, Zvi
N1 - Publisher Copyright:
© 2019 The Royal Society of Chemistry.
PY - 2019
Y1 - 2019
N2 - Antibiotic resistance in bacteria has become a serious threat to public health, and therefore there is an urgent need to develop new classes of antimicrobial agents. Nowadays, natural antimicrobial peptides (AMPs) and their synthetic derivatives are considered as promising alternatives to traditional antibiotics. The broad molecular diversity of AMPs, in terms of sequences and structures, suggests that their activity does not depend on specific features of amino acid sequence or peptide conformation. We therefore selected two common properties of AMPs, (high percentage of hydrophobic and cationic amino acids), to develop a novel approach to synthesize random antimicrobial peptide mixtures (RPMs). Instead of incorporating a single amino acid at each coupling step, a mixture of hydrophobic and cationic amino acids in a defined proportion is coupled. This results in a mixture that contains up to 2n sequences, where n is the number of the coupling step, of random peptides with a defined composition, stereochemistry, and controlled chain length. We have discovered that RPMs of hydrophobic and cationic α-amino acids, such as phenylalanine and lysine, display strong and broad antimicrobial activity towards Gram-negative, Gram-positive, clinically isolated antibiotic resistant "superbugs", and several plant pathogenic bacteria. This review summarizes our efforts to explore the mode of action of RPMs and their potential as bioactive agents for multiple applications, including the prevention of biofilm formation and degradation of mature biofilm (related to human health), reduction of disease severity in plant bacterial disease models (related to crop protection), and inhibition of bacterial growth in milk (related to food preservation). All our findings illustrate the effectiveness of RPMs and their great potential for various applications.
AB - Antibiotic resistance in bacteria has become a serious threat to public health, and therefore there is an urgent need to develop new classes of antimicrobial agents. Nowadays, natural antimicrobial peptides (AMPs) and their synthetic derivatives are considered as promising alternatives to traditional antibiotics. The broad molecular diversity of AMPs, in terms of sequences and structures, suggests that their activity does not depend on specific features of amino acid sequence or peptide conformation. We therefore selected two common properties of AMPs, (high percentage of hydrophobic and cationic amino acids), to develop a novel approach to synthesize random antimicrobial peptide mixtures (RPMs). Instead of incorporating a single amino acid at each coupling step, a mixture of hydrophobic and cationic amino acids in a defined proportion is coupled. This results in a mixture that contains up to 2n sequences, where n is the number of the coupling step, of random peptides with a defined composition, stereochemistry, and controlled chain length. We have discovered that RPMs of hydrophobic and cationic α-amino acids, such as phenylalanine and lysine, display strong and broad antimicrobial activity towards Gram-negative, Gram-positive, clinically isolated antibiotic resistant "superbugs", and several plant pathogenic bacteria. This review summarizes our efforts to explore the mode of action of RPMs and their potential as bioactive agents for multiple applications, including the prevention of biofilm formation and degradation of mature biofilm (related to human health), reduction of disease severity in plant bacterial disease models (related to crop protection), and inhibition of bacterial growth in milk (related to food preservation). All our findings illustrate the effectiveness of RPMs and their great potential for various applications.
UR - http://www.scopus.com/inward/record.url?scp=85061363800&partnerID=8YFLogxK
U2 - 10.1039/c8cc09961h
DO - 10.1039/c8cc09961h
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30688322
AN - SCOPUS:85061363800
SN - 1359-7345
VL - 55
SP - 2007
EP - 2014
JO - Chemical Communications
JF - Chemical Communications
IS - 14
ER -