Abstract
Brouwer's fixed point theorem, a fundamental theorem in algebraic topology proved more than a hundred years ago, states that given any continuous map from a closed, simply connected set into itself, there is a point that is mapped unto itself. Here we point out the connection between a one-dimensional application of Brouwer's fixed point theorem and a mechanism proposed to explain how extension of single-stranded DNA substrates by recombinases of the RecA superfamily facilitates significantly the search for homologous sequences on long chromosomes.
Original language | English |
---|---|
Pages (from-to) | 64-67 |
Number of pages | 4 |
Journal | iScience |
Volume | 4 |
DOIs | |
State | Published - 29 Jun 2018 |
Bibliographical note
Publisher Copyright:© 2018 The Authors
Keywords
- Biophysics
- Genetics
- Mathematical Physics