Abstract
Most works on gender bias focus on intrinsic bias - removing traces of information about a protected group from the model's internal representation. However, these works are often disconnected from the impact of such debiasing on downstream applications, which is the main motivation for debiasing in the first place. In this work, we systematically test how methods for intrinsic debiasing affect neural machine translation models, by measuring the extrinsic bias of such systems under different design choices. We highlight three challenges and mismatches between the debiasing techniques and their end-goal usage, including the choice of embeddings to debias, the mismatch between words and sub-word tokens debiasing, and the effect of translating from English to different target languages. We find that these considerations have a significant impact on downstream performance and the success of debiasing.
Original language | English |
---|---|
Title of host publication | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference |
Editors | Yaser Al-Onaizan, Mohit Bansal, Yun-Nung Chen |
Publisher | Association for Computational Linguistics (ACL) |
Pages | 14914-14921 |
Number of pages | 8 |
ISBN (Electronic) | 9798891761643 |
State | Published - 2024 |
Event | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 - Hybrid, Miami, United States Duration: 12 Nov 2024 → 16 Nov 2024 |
Publication series
Name | EMNLP 2024 - 2024 Conference on Empirical Methods in Natural Language Processing, Proceedings of the Conference |
---|
Conference
Conference | 2024 Conference on Empirical Methods in Natural Language Processing, EMNLP 2024 |
---|---|
Country/Territory | United States |
City | Hybrid, Miami |
Period | 12/11/24 → 16/11/24 |
Bibliographical note
Publisher Copyright:© 2024 Association for Computational Linguistics.