TY - GEN
T1 - Approximate inference and protein-folding
AU - Yanover, Chen
AU - Weiss, Yair
PY - 2003
Y1 - 2003
N2 - Side-chain prediction is an important subtask in the protein-folding problem. We show that finding a minimal energy side-chain configuration is equivalent to performing inference in an undirected graphical model. The graphical model is relatively sparse yet has many cycles. We used this equivalence to assess the performance of approximate inference algorithms in a real-world setting. Specifically we compared belief propagation (BP), generalized BP (GBP) and naive mean field (MF). In cases where exact inference was possible, max-product BP always found the global minimum of the energy (except in few cases where it failed to converge), while other approximation algorithms of similar complexity did not. In the full protein data set, max-product BP always found a lower energy configuration than the other algorithms, including a widely used protein-folding software (SCWRL).
AB - Side-chain prediction is an important subtask in the protein-folding problem. We show that finding a minimal energy side-chain configuration is equivalent to performing inference in an undirected graphical model. The graphical model is relatively sparse yet has many cycles. We used this equivalence to assess the performance of approximate inference algorithms in a real-world setting. Specifically we compared belief propagation (BP), generalized BP (GBP) and naive mean field (MF). In cases where exact inference was possible, max-product BP always found the global minimum of the energy (except in few cases where it failed to converge), while other approximation algorithms of similar complexity did not. In the full protein data set, max-product BP always found a lower energy configuration than the other algorithms, including a widely used protein-folding software (SCWRL).
UR - http://www.scopus.com/inward/record.url?scp=84898991014&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84898991014
SN - 0262025507
SN - 9780262025508
T3 - Advances in Neural Information Processing Systems
BT - Advances in Neural Information Processing Systems 15 - Proceedings of the 2002 Conference, NIPS 2002
PB - Neural information processing systems foundation
T2 - 16th Annual Neural Information Processing Systems Conference, NIPS 2002
Y2 - 9 December 2002 through 14 December 2002
ER -