TY - GEN
T1 - Approximating power indices
AU - Bachrach, Yoram
AU - Markakis, Evangelos
AU - Procaccia, Ariel D.
AU - Rosenschein, Jeffrey S.
AU - Saberi, Amin
PY - 2008
Y1 - 2008
N2 - Many multiagent domains where cooperation among agents is crucial to achieving a common goal can be modeled as coalitional games. However, in many of these domains, agents are unequal in their power to affect the outcome of the game. Prior research on weighted voting games has explored power indices, which reflect how much "real power" a voter has. Although primarily used for voting games, these indices can be applied to any simple coalitional game. Computing these indices is known to be computationally hard in various domains, so one must sometimes resort to approximate methods for calculating them. We suggest and analyze randomized methods to approximate power indices such as the Banzhaf power index and the Shapley-Shubik power index. Our approximation algorithms do not depend on a specific representation of the game, so they can be used in any simple coalitional game. Our methods are based on testing the game's value for several sample coalitions. We also show that no approximation algorithm can do much better for general coalitional games, by providing lower bounds for both deterministic and randomized algorithms for calculating power indices.
AB - Many multiagent domains where cooperation among agents is crucial to achieving a common goal can be modeled as coalitional games. However, in many of these domains, agents are unequal in their power to affect the outcome of the game. Prior research on weighted voting games has explored power indices, which reflect how much "real power" a voter has. Although primarily used for voting games, these indices can be applied to any simple coalitional game. Computing these indices is known to be computationally hard in various domains, so one must sometimes resort to approximate methods for calculating them. We suggest and analyze randomized methods to approximate power indices such as the Banzhaf power index and the Shapley-Shubik power index. Our approximation algorithms do not depend on a specific representation of the game, so they can be used in any simple coalitional game. Our methods are based on testing the game's value for several sample coalitions. We also show that no approximation algorithm can do much better for general coalitional games, by providing lower bounds for both deterministic and randomized algorithms for calculating power indices.
KW - Power indices
KW - Randomized algorithms
UR - http://www.scopus.com/inward/record.url?scp=84899967235&partnerID=8YFLogxK
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84899967235
SN - 9781605604701
T3 - Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS
SP - 925
EP - 932
BT - 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008
PB - International Foundation for Autonomous Agents and Multiagent Systems (IFAAMAS)
T2 - 7th International Joint Conference on Autonomous Agents and Multiagent Systems, AAMAS 2008
Y2 - 12 May 2008 through 16 May 2008
ER -