Approximation algorithms for combinatorial auctions with complement-free bidders

Shahar Dobzinski*, Noam Nisan, Michael Schapira

*Corresponding author for this work

Research output: Contribution to journalConference articlepeer-review

111 Scopus citations

Abstract

We exhibit three approximation algorithms for the allocation problem in combinatorial auctions with complement free bidders. The running time of these algorithms is polynomial in the number of items m and in the number of bidders n, even though the "input size" is exponential in m. The first algorithm provides an O(log m) approximation. The second algorithm provides an O(√m) approximation in the weaker model of value oracles. This algorithm is also incentive compatible. The third algorithm provides an improved 2-approximation for the more restricted case of "XOS bidders", a class which strictly contains submodular bidders. We also prove lower bounds on the possible approximations achievable for these classes of bidders. These bounds are not tight and we leave the gaps as open problems.

Original languageAmerican English
Pages (from-to)610-618
Number of pages9
JournalProceedings of the Annual ACM Symposium on Theory of Computing
DOIs
StatePublished - 2005
Event13th Color Imaging Conference: Color Science, Systems, Technologies, and Applications - Scottsdale, AZ, United States
Duration: 7 Nov 200511 Nov 2005

Keywords

  • Combinatorial Auctions

Fingerprint

Dive into the research topics of 'Approximation algorithms for combinatorial auctions with complement-free bidders'. Together they form a unique fingerprint.

Cite this