Arousal increases the representational capacity of cortical tissue

Tomer Fekete*, Itamar Pitowsky, Amiram Grinvald, David B. Omer

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

14 Scopus citations

Abstract

Arousal patently transforms the faculties of complex organisms. Although typical changes in cortical activity such as seen in EEG and LFP measurements are associated with change in state of arousal, it remains unclear what in the constitution of such state dependent activity enables this profound enhancement of ability. We put forward the hypothesis that arousal modulates cortical activity by rendering it more fit to represent information. We argue that representational capacity is of a dual nature - it requires not only that cortical tissue generate complex activity (i.e. spatiotemporal neuronal events), but also a complex cortical activity space (which is comprised of such spatiotemporal events). We explain that the topological notion of complexity - homology - is the pertinent measure of the complexity of neuronal activity spaces, as homological structure indicates not only the degree to which underlying activity is inherently clustered but also registers the effective dimensionality of the configurations formed by such clusters. Changes of this sort in the structure of cortical activity spaces can serve as the basis of the enhanced capacity to make perceptual/behavioral distinctions brought about by arousal. To show the feasibility of these ideas, we analyzed voltage sensitive dye imaging (VSDI) data acquired from primate visual cortex in disparate states of arousal. Our results lend some support to the theory: first as arousal increased so did the complexity of activity (that is the complexity of VSDI movies). Moreover, the complexity of structure of activity space (that is VSDI movie space) as measured by persistent homology - a multi scale topological measure of complexity - increased with arousal as well.

Original languageAmerican English
Pages (from-to)211-227
Number of pages17
JournalJournal of Computational Neuroscience
Volume27
Issue number2
DOIs
StatePublished - 2009
Externally publishedYes

Bibliographical note

Funding Information:
Acknowledgements We thank Rina Hildesheim for the dyes and Yuval Toledo for computer technical assistance. We thank David Blanc for the invaluable discussions of the ideas presented here. Also, we thank Shimon Edelman for his meticulous reading of the manuscript and helpful remarks. We thank Vanessa Robins and Boaz Nadler for helpful advice. Finally we thank Neta Zach for just about everything. This work was supported by The Weizmann Institute of Science, Rehovot, Israel, and an EU Daisy grant.

Keywords

  • Arousal
  • Complexity
  • Optical imaging
  • Persistenthomology
  • Representational capacity
  • State dependent activity
  • States of consciousness
  • Voltage sensitive dye

Fingerprint

Dive into the research topics of 'Arousal increases the representational capacity of cortical tissue'. Together they form a unique fingerprint.

Cite this