TY - JOUR
T1 - Artemisinin resistance in the malaria parasite, Plasmodium falciparum, originates from its initial transcriptional response
AU - Zhu, Lei
AU - van der Pluijm, Rob W.
AU - Kucharski, Michal
AU - Nayak, Sourav
AU - Tripathi, Jaishree
AU - White, Nicholas J.
AU - Day, Nicholas P.J.
AU - Faiz, Abul
AU - Phyo, Aung Pyae
AU - Amaratunga, Chanaki
AU - Lek, Dysoley
AU - Ashley, Elizabeth A.
AU - Nosten, François
AU - Smithuis, Frank
AU - Ginsburg, Hagai
AU - von Seidlein, Lorenz
AU - Lin, Khin
AU - Imwong, Mallika
AU - Chotivanich, Kesinee
AU - Mayxay, Mayfong
AU - Dhorda, Mehul
AU - Nguyen, Hoang Chau
AU - Nguyen, Thuy Nhien Thanh
AU - Miotto, Olivo
AU - Newton, Paul N.
AU - Jittamala, Podjanee
AU - Tripura, Rupam
AU - Pukrittayakamee, Sasithon
AU - Peto, Thomas J.
AU - Hien, Tran Tinh
AU - Dondorp, Arjen M.
AU - Bozdech, Zbynek
N1 - Publisher Copyright:
© 2022, The Author(s).
PY - 2022/12
Y1 - 2022/12
N2 - The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016–2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex.
AB - The emergence and spread of artemisinin-resistant Plasmodium falciparum, first in the Greater Mekong Subregion (GMS), and now in East Africa, is a major threat to global malaria elimination ambitions. To investigate the artemisinin resistance mechanism, transcriptome analysis was conducted of 577 P. falciparum isolates collected in the GMS between 2016–2018. A specific artemisinin resistance-associated transcriptional profile was identified that involves a broad but discrete set of biological functions related to proteotoxic stress, host cytoplasm remodelling, and REDOX metabolism. The artemisinin resistance-associated transcriptional profile evolved from initial transcriptional responses of susceptible parasites to artemisinin. The genetic basis for this adapted response is likely to be complex.
UR - http://www.scopus.com/inward/record.url?scp=85127289697&partnerID=8YFLogxK
U2 - 10.1038/s42003-022-03215-0
DO - 10.1038/s42003-022-03215-0
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 35347215
AN - SCOPUS:85127289697
SN - 2399-3642
VL - 5
JO - Communications Biology
JF - Communications Biology
IS - 1
M1 - 274
ER -