TY - JOUR
T1 - Assembling Di- and Polynuclear Cu(I) Complexes with Rigid Thioxanthone-Based Ligands
T2 - Structures, Reactivity, and Photoluminescence
AU - Zafar, Mohammad
AU - Subramaniyan, Vasudevan
AU - Ansari, Kamal Uddin
AU - Yakir, Hadar
AU - Danovich, David
AU - Tulchinsky, Yuri
N1 - Publisher Copyright:
© 2024 The Authors. Published by American Chemical Society.
PY - 2024
Y1 - 2024
N2 - Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand (L1) that appears as a promising platform for filling this niche. Herein, we demonstrate that with Cu(I) this ligand exclusively assembles into dimeric structures with either di- or polynuclear Cu(I) cores. With cationic Cu(I) precursors, complexes featuring solvent-bridged bis-cationic cores were obtained. These coordinatively unsaturated bimetallic systems showed surprisingly facile activation of the chloroform C-Cl bonds, suggesting a possible metal-metal cooperation. The reaction of L1 with binary Cu(I) halides afforded dimeric complexes with polynuclear [CuX]n (n = 3 or 4) cores. With X = Br or I, emissive complexes containing stairstep [CuX]4 clusters were obtained. Emission lifetimes in the microsecond range measured for these complexes were indicative of a triplet emission (phosphorescence), which according to our time-dependent density functional theory study originates from a halide-metal-to-ligand charge transfer between the [CuX]4 cluster and the TX backbone of L1. Finally, the distinctive polynucleating behavior of L1 toward Cu(I) was also showcased by a comparison to another PSP ligand with a diaryl thioether backbone (L2), which formed only mononuclear pincer-type complexes, lacking any unusual reactivity or photoluminescence.
AB - Thioxanthone (TX) molecules and their derivatives are well-known photoactive compounds. Yet, there exist only a handful of luminescent systems combining TX with transition metals. Recently, we reported a TX-based PSP pincer ligand (L1) that appears as a promising platform for filling this niche. Herein, we demonstrate that with Cu(I) this ligand exclusively assembles into dimeric structures with either di- or polynuclear Cu(I) cores. With cationic Cu(I) precursors, complexes featuring solvent-bridged bis-cationic cores were obtained. These coordinatively unsaturated bimetallic systems showed surprisingly facile activation of the chloroform C-Cl bonds, suggesting a possible metal-metal cooperation. The reaction of L1 with binary Cu(I) halides afforded dimeric complexes with polynuclear [CuX]n (n = 3 or 4) cores. With X = Br or I, emissive complexes containing stairstep [CuX]4 clusters were obtained. Emission lifetimes in the microsecond range measured for these complexes were indicative of a triplet emission (phosphorescence), which according to our time-dependent density functional theory study originates from a halide-metal-to-ligand charge transfer between the [CuX]4 cluster and the TX backbone of L1. Finally, the distinctive polynucleating behavior of L1 toward Cu(I) was also showcased by a comparison to another PSP ligand with a diaryl thioether backbone (L2), which formed only mononuclear pincer-type complexes, lacking any unusual reactivity or photoluminescence.
UR - http://www.scopus.com/inward/record.url?scp=85212574837&partnerID=8YFLogxK
U2 - 10.1021/acs.inorgchem.4c03819
DO - 10.1021/acs.inorgchem.4c03819
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 39681326
AN - SCOPUS:85212574837
SN - 0020-1669
JO - Inorganic Chemistry
JF - Inorganic Chemistry
ER -