Atomically flat semiconductor nanoplatelets for light-emitting applications

Bing Bai, Chengxi Zhang, Yongjiang Dou, Lingmei Kong, Lin Wang, Sheng Wang, Jun Li, Yi Zhou, Long Liu, Baiquan Liu, Xiaoyu Zhang, Ido Hadar, Yehonadav Bekenstein, Aixiang Wang, Zongyou Yin, Lyudmila Turyanska, Jochen Feldmann, Xuyong Yang*, Guohua Jia*

*Corresponding author for this work

Research output: Contribution to journalReview articlepeer-review

16 Scopus citations

Abstract

The last decade has witnessed extensive breakthroughs and significant progress in atomically flat two-dimensional (2D) semiconductor nanoplatelets (NPLs) in terms of synthesis, growth mechanisms, optical and electronic properties and practical applications. Such NPLs have electronic structures similar to those of quantum wells in which excitons are predominantly confined along the vertical direction, while electrons are free to move in the lateral directions, resulting in unique optical properties, such as extremely narrow emission line width, short photoluminescence (PL) lifetime, high gain coefficient, and giant oscillator strength transition (GOST). These unique optical properties make NPLs favorable for high color purity light-emitting applications, in particular in light-emitting diodes (LEDs), backlights for liquid crystal displays (LCDs) and lasers. This review article first introduces the intrinsic characteristics of 2D semiconductor NPLs with atomic flatness. Subsequently, the approaches and mechanisms for the controlled synthesis of atomically flat NPLs are summarized followed by an insight on recent progress in the mediation of core/shell, core/crown and core/crown@shell structures by selective epitaxial growth of passivation layers on different planes of NPLs. Moreover, an overview of the unique optical properties and the associated light-emitting applications is elaborated. Despite great progress in this research field, there are some issues relating to heavy metal elements such as Cd2+ in NPLs, and the ambiguous gain mechanisms of NPLs and others are the main obstacles that prevent NPLs from widespread applications. Therefore, a perspective is included at the end of this review article, in which the current challenges in this stimulating research field are discussed and possible solutions to tackle these challenges are proposed.

Original languageAmerican English
Pages (from-to)318-360
Number of pages43
JournalChemical Society Reviews
Volume52
Issue number1
DOIs
StatePublished - 19 Dec 2022

Bibliographical note

Publisher Copyright:
© 2023 The Royal Society of Chemistry.

Fingerprint

Dive into the research topics of 'Atomically flat semiconductor nanoplatelets for light-emitting applications'. Together they form a unique fingerprint.

Cite this