Attention-based coverage metrics

Shoham Ben-David, Hana Chockler, Orna Kupferman

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

1 Scopus citations


Over the last decade, extensive research has been conducted on coverage metrics for model checking. The most common coverage metrics are based on mutations, where one examines the effect of small modifications of the system on the satisfaction of the specification. While it is commonly accepted that mutation-based coverage provides adequate means for assessing the exhaustiveness of the model-checking procedure, the incorporation of coverage checks in industrial model checking tools is still very partial. One reason for this is the typically overwhelming number of non-covered mutations, which requires the user to somehow filter those that are most likely to point to real errors or overlooked behaviors. We address this problem and propose to filter mutations according to the attention the designer has paid to the mutated components in the model. We formalize the attention intuition using a multi-valued setting, where the truth values of the signals in the model describe their level of importance. Non-covered mutations of signals of high importance are then more alarming than non-covered mutations of signals with low intention. Given that such "importance information" is usually not available in practice, we suggest two new coverage metrics that automatically approximate it. The idea behind both metrics is the observation that designers tend to modify the value of signals only when there is a reason to do so. We demonstrate the advantages of both metrics and describe algorithms for calculating them.

Original languageAmerican English
Title of host publicationHardware and Software
Subtitle of host publicationVerification and Testing - 9th International Haifa Verification Conference, HVC 2013, Proceedings
PublisherSpringer Verlag
Number of pages16
ISBN (Print)9783319030760
StatePublished - 2013
Event9th Haifa Verification Conference, HVC 2013 - Haifa, Israel
Duration: 5 Nov 20137 Nov 2013

Publication series

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Volume8244 LNCS
ISSN (Print)0302-9743
ISSN (Electronic)1611-3349


Conference9th Haifa Verification Conference, HVC 2013

Bibliographical note

Funding Information:
This work is partially supported by the EC FP7 programme, PINCETTE 257647, and by the ERC (FP7/2007-2013) grant agreement QUALITY 278410.


Dive into the research topics of 'Attention-based coverage metrics'. Together they form a unique fingerprint.

Cite this