TY - JOUR
T1 - Attraction between electrophilic caps
T2 - A counterintuitive case of noncovalent interactions
AU - Wang, Changwei
AU - Danovich, David
AU - Shaik, Sason
AU - Wu, Wei
AU - Mo, Yirong
N1 - Publisher Copyright:
© 2018 Wiley Periodicals, Inc.
PY - 2019/4/5
Y1 - 2019/4/5
N2 - Intermolecular attractive interaction between electrophilic sites is a counterintuitive phenomenon, as the electrostatic interaction therein is repulsive and destabilizing. Here, we confirm this phenomenon in four representative complexes, using state-of-the-art quantum mechanical methods. By employing the block-localized wavefunction (BLW) method, which can turn off intermolecular charge transfer interactions, we profoundly demonstrated the significance of charge transfer interactions in these seemingly counterintuitive complexes. Indeed, after being “turned off” the intermolecular charge transfer interaction in, for example, the FNSi···BrF complex, the originally attractive intermolecular interaction turns to be repulsive. The energy decomposition approach based on the BLW method (BLW-ED) can partition the overall stability gained on the formation of intermolecular noncovalent interaction into several physically meaningful components. According to the BLW-ED analysis, the electrostatic repulsion in these counterintuitive cases is overwhelmed by the stabilizing polarization, dispersion interaction, and most importantly, the charge transfer interaction, resulting in the eventual counterintuitive overall attraction. The present study suggests that, predicting bonding sites of noncovalent interactions using only the “hole” concept may be not universally sufficient, because other significant stabilizing factors will contribute to the stability and sometimes, play even bigger roles than the electrostatic interaction and consequently govern the complex structures.
AB - Intermolecular attractive interaction between electrophilic sites is a counterintuitive phenomenon, as the electrostatic interaction therein is repulsive and destabilizing. Here, we confirm this phenomenon in four representative complexes, using state-of-the-art quantum mechanical methods. By employing the block-localized wavefunction (BLW) method, which can turn off intermolecular charge transfer interactions, we profoundly demonstrated the significance of charge transfer interactions in these seemingly counterintuitive complexes. Indeed, after being “turned off” the intermolecular charge transfer interaction in, for example, the FNSi···BrF complex, the originally attractive intermolecular interaction turns to be repulsive. The energy decomposition approach based on the BLW method (BLW-ED) can partition the overall stability gained on the formation of intermolecular noncovalent interaction into several physically meaningful components. According to the BLW-ED analysis, the electrostatic repulsion in these counterintuitive cases is overwhelmed by the stabilizing polarization, dispersion interaction, and most importantly, the charge transfer interaction, resulting in the eventual counterintuitive overall attraction. The present study suggests that, predicting bonding sites of noncovalent interactions using only the “hole” concept may be not universally sufficient, because other significant stabilizing factors will contribute to the stability and sometimes, play even bigger roles than the electrostatic interaction and consequently govern the complex structures.
KW - electrostatic attraction
KW - energy decomposition analysis
KW - noncovalent interaction
KW - valence bond theory
KW - σ-hole
UR - http://www.scopus.com/inward/record.url?scp=85054310267&partnerID=8YFLogxK
U2 - 10.1002/jcc.25566
DO - 10.1002/jcc.25566
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 30284295
AN - SCOPUS:85054310267
SN - 0192-8651
VL - 40
SP - 1015
EP - 1022
JO - Journal of Computational Chemistry
JF - Journal of Computational Chemistry
IS - 9
ER -