TY - JOUR
T1 - Autosomal recessive familial neurohypophyseal diabetes insipidus
T2 - Onset in early infancy
AU - Libdeh, Abdulsalam Abu
AU - Levy-Khademi, Floris
AU - Abdulhadi-Atwan, Maha
AU - Bosin, Emily
AU - Korner, Mira
AU - White, Perrin C.
AU - Zangen, David H.
PY - 2010/2/1
Y1 - 2010/2/1
N2 - Background: Familial neurohypophyseal diabetes insipidus (FNDI), usually an autosomal dominant disorder, is caused by mutations in the arginine vasopressin (AVP)-neurophysin II preprohormone leading to aberrant preprohormone processing and gradual destruction of AVP-secreting cells. Patients typically present between 1 and 6 years of age with polyuria and polydipsia. Objective: Clinical, biochemical, and genetic studies of three new cases of autosomal recessive FNDI presenting in early infancy. Patients: Three Palestinian cousins presented with failure to thrive, vomiting, irritability, and fever. The parents were asymptomatic. Patients developed hypernatremia (154-163 mmol/l) and serum hyperosmolality (>320 mOsm/kg), while urine osmolality remained between 73 and 229 mOsm/kg. Plasma AVP levels were low, and the posterior pituitary bright spot was absent on magnetic resonance imaging (MRI). All patients responded to desmopressin. Results: Patients were homozygous and parents were heterozygous for microsatellite markers flanking the AVP gene. All patients were homozygous for the P26L (proline to leucine) substitution affecting mature AVP. A founder effect with the single original kindred carrying the P26L mutation was confirmed by microsatellite analysis, but patients in that family presented only at 2 years of age. In microsatellite analysis, the new kindred patients were not homozygous and did not share a single allele at the aquaporin 2 and vasopressin receptor-2 genes locuses. Conclusion: This is the first description of autosomal recessive FNDI presenting in the neonatal period. The unusual early clinical and radiological (MRI) presentation argues against gradual destruction of AVP-secreting neurons as the pathophysiological mechanism. Factors beside allelism of AVP-related genes must influence the age of FNDI presentation given the founder effect demonstrated for the P26L mutation.
AB - Background: Familial neurohypophyseal diabetes insipidus (FNDI), usually an autosomal dominant disorder, is caused by mutations in the arginine vasopressin (AVP)-neurophysin II preprohormone leading to aberrant preprohormone processing and gradual destruction of AVP-secreting cells. Patients typically present between 1 and 6 years of age with polyuria and polydipsia. Objective: Clinical, biochemical, and genetic studies of three new cases of autosomal recessive FNDI presenting in early infancy. Patients: Three Palestinian cousins presented with failure to thrive, vomiting, irritability, and fever. The parents were asymptomatic. Patients developed hypernatremia (154-163 mmol/l) and serum hyperosmolality (>320 mOsm/kg), while urine osmolality remained between 73 and 229 mOsm/kg. Plasma AVP levels were low, and the posterior pituitary bright spot was absent on magnetic resonance imaging (MRI). All patients responded to desmopressin. Results: Patients were homozygous and parents were heterozygous for microsatellite markers flanking the AVP gene. All patients were homozygous for the P26L (proline to leucine) substitution affecting mature AVP. A founder effect with the single original kindred carrying the P26L mutation was confirmed by microsatellite analysis, but patients in that family presented only at 2 years of age. In microsatellite analysis, the new kindred patients were not homozygous and did not share a single allele at the aquaporin 2 and vasopressin receptor-2 genes locuses. Conclusion: This is the first description of autosomal recessive FNDI presenting in the neonatal period. The unusual early clinical and radiological (MRI) presentation argues against gradual destruction of AVP-secreting neurons as the pathophysiological mechanism. Factors beside allelism of AVP-related genes must influence the age of FNDI presentation given the founder effect demonstrated for the P26L mutation.
UR - http://www.scopus.com/inward/record.url?scp=75149125745&partnerID=8YFLogxK
U2 - 10.1530/EJE-09-0772
DO - 10.1530/EJE-09-0772
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 19897608
AN - SCOPUS:75149125745
SN - 0804-4643
VL - 162
SP - 221
EP - 226
JO - European Journal of Endocrinology
JF - European Journal of Endocrinology
IS - 2
ER -