Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection

Eliahu Horwitz*, Yedid Hoshen

*Corresponding author for this work

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

5 Scopus citations

Abstract

Despite significant advances in image anomaly detection and segmentation, few methods use 3D information. We utilize a recently introduced 3D anomaly detection dataset to evaluate whether or not using 3D information is a lost opportunity. First, we present a surprising finding: standard color-only methods outperform all current methods that are explicitly designed to exploit 3D information. This is counter-intuitive as even a simple inspection of the dataset shows that color-only methods are insufficient for images containing geometric anomalies. This motivates the question: how can anomaly detection methods effectively use 3D information? We investigate a range of shape representations including hand-crafted and deep-learning-based; we demonstrate that rotation invariance plays the leading role in the performance. We uncover a simple 3D-only method that beats all recent approaches while not using deep learning, external pre-training datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with color-based features, significantly outperforming previous state-of-the-art. Our method, dubbed BTF (Back to the Feature) achieves pixel-wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.

Original languageAmerican English
Title of host publicationProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
PublisherIEEE Computer Society
Pages2968-2977
Number of pages10
ISBN (Electronic)9798350302493
DOIs
StatePublished - 2023
Event2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada
Duration: 18 Jun 202322 Jun 2023

Publication series

NameIEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops
Volume2023-June
ISSN (Print)2160-7508
ISSN (Electronic)2160-7516

Conference

Conference2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023
Country/TerritoryCanada
CityVancouver
Period18/06/2322/06/23

Bibliographical note

Publisher Copyright:
© 2023 IEEE.

Fingerprint

Dive into the research topics of 'Back to the Feature: Classical 3D Features are (Almost) All You Need for 3D Anomaly Detection'. Together they form a unique fingerprint.

Cite this