Abstract
Despite significant advances in image anomaly detection and segmentation, few methods use 3D information. We utilize a recently introduced 3D anomaly detection dataset to evaluate whether or not using 3D information is a lost opportunity. First, we present a surprising finding: standard color-only methods outperform all current methods that are explicitly designed to exploit 3D information. This is counter-intuitive as even a simple inspection of the dataset shows that color-only methods are insufficient for images containing geometric anomalies. This motivates the question: how can anomaly detection methods effectively use 3D information? We investigate a range of shape representations including hand-crafted and deep-learning-based; we demonstrate that rotation invariance plays the leading role in the performance. We uncover a simple 3D-only method that beats all recent approaches while not using deep learning, external pre-training datasets, or color information. As the 3D-only method cannot detect color and texture anomalies, we combine it with color-based features, significantly outperforming previous state-of-the-art. Our method, dubbed BTF (Back to the Feature) achieves pixel-wise ROCAUC: 99.3% and PRO: 96.4% on MVTec 3D-AD.
Original language | English |
---|---|
Title of host publication | Proceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 |
Publisher | IEEE Computer Society |
Pages | 2968-2977 |
Number of pages | 10 |
ISBN (Electronic) | 9798350302493 |
DOIs | |
State | Published - 2023 |
Event | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 - Vancouver, Canada Duration: 18 Jun 2023 → 22 Jun 2023 |
Publication series
Name | IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops |
---|---|
Volume | 2023-June |
ISSN (Print) | 2160-7508 |
ISSN (Electronic) | 2160-7516 |
Conference
Conference | 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops, CVPRW 2023 |
---|---|
Country/Territory | Canada |
City | Vancouver |
Period | 18/06/23 → 22/06/23 |
Bibliographical note
Publisher Copyright:© 2023 IEEE.