Basal ganglia deep brain stimulation restores cognitive flexibility and exploration-exploitation balance disrupted by NMDA-R antagonism

Nir Asch*, Noa Rahamim, Anna Morozov, Uri Werner-Reiss, Zvi Israel, Rony Paz, Hagai Bergman

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

Learning thrives on cognitive flexibility and exploration. Subjects with schizophrenia have impaired cognitive flexibility and maladaptive exploration patterns. The basal ganglia-dorsolateral prefrontal cortex (BG-DLPFC) network plays a significant role in learning processes. However, how this network maintains cognitive flexibility and exploration patterns and what alters these patterns in schizophrenia remains elusive. Using a combination of extracellular recordings, pharmacological manipulations, macro-stimulation techniques, and mathematical modeling, we show that in the nonhuman primate (NHP), the external segment of the globus pallidus (GPe, the central nucleus of the BG network) modulates cognitive flexibility and exploration patterns (experiments were done in females only). We found that chronic, low-dose administration of N-methyl-D-aspartate receptor (NMDA-R) antagonist, phencyclidine (PCP), decreases directed exploration but increases random exploration, as seen in schizophrenia. In line with adaptive working-memory reinforcement-learning models of the BG-DLPFC network, low-frequency GPe macro-stimulation restores the balance of both exploration types. Our findings suggest that exploration-exploitation imbalance reflects abnormal BG-DLPFC activity and that GPe stimulation may restore it.

Original languageEnglish
Article number4963
JournalNature Communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

Fingerprint

Dive into the research topics of 'Basal ganglia deep brain stimulation restores cognitive flexibility and exploration-exploitation balance disrupted by NMDA-R antagonism'. Together they form a unique fingerprint.

Cite this