Beta Cell Death by Cell-free DNA and Outcome after Clinical Islet Transplantation

Boris L. Gala-Lopez, Daniel Neiman, Tatsuya Kin, Doug O'Gorman, Andrew R. Pepper, Andrew J. Malcolm, Sheina Pianzin, Peter A. Senior, Patricia Campbell, Benjamin Glaser, Yuval Dor, Ruth Shemer, A. M.James Shapiro*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

34 Scopus citations

Abstract

Background Optimizing engraftment and early survival after clinical islet transplantation is critical to long-term function, but there are no reliable, quantifiable measures to assess beta cell death. Circulating cell-free DNA (cfDNA) derived from beta cells has been identified as a novel biomarker to detect cell loss and was recently validated in new-onset type 1 diabetes and in islet transplant patients. Methods Herein we report beta cell cfDNA measurements after allotransplantation in 37 subjects and the correlation with clinical outcomes. Results A distinctive peak of cfDNA was observed 1 hour after transplantation in 31 (83.8%) of 37 subjects. The presence and magnitude of this signal did not correlate with transplant outcome. The 1-hour signal represents dead beta cells carried over into the recipient after islet isolation and culture, combined with acute cell death post infusion. Beta cell cfDNA was also detected 24 hours posttransplant (8/37 subjects, 21.6%). This signal was associated with higher 1-month insulin requirements (P = 0.04), lower 1-month stimulated C-peptide levels (P = 0.01), and overall worse 3-month engraftment, by insulin independence (receiver operating characteristic-area under the curve = 0.70, P = 0.03) and beta 2 score (receiver operating characteristic-area under the curve = 0.77, P = 0.006). Conclusions cfDNA-based estimation of beta cell death 24 hours after islet allotransplantation correlates with clinical outcome and could predict early engraftment.

Original languageAmerican English
Pages (from-to)978-985
Number of pages8
JournalTransplantation
Volume102
Issue number6
DOIs
StatePublished - 1 Jun 2018

Bibliographical note

Funding Information:
B.G.-L. is supported through the Alberta Innovates: Health Solutions (AIHS) Clinician Fellowship and through the CNTRP. A.P. is supported through AIHS Postgraduate Fellowship and CNTRP. A.M.J.S. is supported through AIHS, and holds a Canada Research Chair in Transplantation Surgery and Regenerative Medicine funded through the Government of Canada. A.M.J.S. is also funded by AIHS Collaborative Research and Innovation Opportunity Team Award and the Diabetes Research Institute Foundation of Canada (DRIFCan). Supported by grants from the Juvenile Diabetes Research Foundation (JDRF) (3-SRA-2014-38-Q-R, to Y.D. and A.M.J.S.), National Institute of Health (NIH) (HIRN grant UC4 DK104216, to Y.D.), DON foundation (Stichting Diabetes Onderzoek Nederland) (to Y.D), the European Union ELASTISLET project, to Y.D.) and the Kahn foundation (to Y.D., R.S., and B.G.). Supported in part by a grant from The United States Agency for International Development (USAID) American Schools and Hospitals Abroad Program for the upgrading of the Hebrew University sequencing core facility.

Funding Information:
B.G.-L. is supported through the Alberta Innovates: Health Solutions (AIHS) Clinician Fellowship and through the CNTRP. A.P. is supported through AIHS Postgraduate Fellowship and CNTRP. A.M.J.S. is supported through AIHS, and holds a Canada Research Chair in Transplantation Surgery and Regenerative Medicine funded through the Government of Canada. A.M.J.S. is also funded by AIHS Collaborative Research and Innovation Opportunity Team Award and the Diabetes Research Institute Foundation of Canada (DRIFCan). Supported by grants from the Juvenile Diabetes Research Foundation (JDRF) (3-SRA-2014-38-Q-R, to Y.D. and A.M.J.S.), National Institute of Health (NIH) (HIRN grant UC4 DK104216, to Y.D.), DON foundation (Stichting Diabetes Onderzoek Nederland) (to Y.D), the European Union

Funding Information:
(ELASTISLET project, to Y.D.) and the Kahn foundation (to Y.D., R.S., and B.G.). Supported in part by a grant from The United States Agency for International Development (USAID) American Schools and Hospitals Abroad Program for the upgrading of the Hebrew University sequencing core facility.

Publisher Copyright:
© 2018 Wolters Kluwer Health, Inc. All rights reserved.

Fingerprint

Dive into the research topics of 'Beta Cell Death by Cell-free DNA and Outcome after Clinical Islet Transplantation'. Together they form a unique fingerprint.

Cite this