TY - GEN
T1 - Beyond myopic best response (in Cournot competition)
AU - Fiat, Amos
AU - Koutsoupias, Elias
AU - Ligett, Katrina
AU - Mansour, Yishay
AU - Olonetsky, Svetlana
PY - 2012
Y1 - 2012
N2 - A Nash Equilibrium is a joint strategy profile at which each agent myopically plays a best response to the other agents' strategies, ignoring the possibility that deviating from the equilibrium could lead to an avalanche of successive changes by other agents. However, such changes could potentially be beneficial to the agent, creating incentive to act non-myopically, so as to take advantage of others' responses. To study this phenomenon, we consider a non-myopic Cournot competition, where each firm selects whether it wants to maximize profit (as in the classical Cournot competition) or to maximize revenue (by masquerading as a firm with zero production costs). The key observation is that profit may actually be higher when acting to maximize revenue, (1) which will depress market prices, (2) which will reduce the production of other firms, (3) which will gain market share for the revenue maximizing firm, (4) which will, overall, increase profits for the revenue maximizing firm. Implicit in this line of thought is that one might take other firms' responses into account when choosing a market strategy. The Nash Equilibria of the non-myopic Cournot competition capture this action/response issue appropriately, and this work is a step towards understanding the impact of such strategic manipulative play in markets. We study the properties of Nash Equilibria of non-myopic Cournot competition with linear demand functions and show existence of pure Nash Equilibria, that simple best response dynamics will produce such an equilibrium, and that for some natural dynamics this convergence is within linear time. This is in contrast to the well known fact that best response dynamics need not converge in the standard myopic Cournot competition. Furthermore, we compare the outcome of the non-myopic Cournot competition with that of the standard myopic Cournot competition. Not surprisingly, perhaps, prices in the non-myopic game are lower and the firms, in total, produce more and have a lower aggregate utility.
AB - A Nash Equilibrium is a joint strategy profile at which each agent myopically plays a best response to the other agents' strategies, ignoring the possibility that deviating from the equilibrium could lead to an avalanche of successive changes by other agents. However, such changes could potentially be beneficial to the agent, creating incentive to act non-myopically, so as to take advantage of others' responses. To study this phenomenon, we consider a non-myopic Cournot competition, where each firm selects whether it wants to maximize profit (as in the classical Cournot competition) or to maximize revenue (by masquerading as a firm with zero production costs). The key observation is that profit may actually be higher when acting to maximize revenue, (1) which will depress market prices, (2) which will reduce the production of other firms, (3) which will gain market share for the revenue maximizing firm, (4) which will, overall, increase profits for the revenue maximizing firm. Implicit in this line of thought is that one might take other firms' responses into account when choosing a market strategy. The Nash Equilibria of the non-myopic Cournot competition capture this action/response issue appropriately, and this work is a step towards understanding the impact of such strategic manipulative play in markets. We study the properties of Nash Equilibria of non-myopic Cournot competition with linear demand functions and show existence of pure Nash Equilibria, that simple best response dynamics will produce such an equilibrium, and that for some natural dynamics this convergence is within linear time. This is in contrast to the well known fact that best response dynamics need not converge in the standard myopic Cournot competition. Furthermore, we compare the outcome of the non-myopic Cournot competition with that of the standard myopic Cournot competition. Not surprisingly, perhaps, prices in the non-myopic game are lower and the firms, in total, produce more and have a lower aggregate utility.
UR - http://www.scopus.com/inward/record.url?scp=84860119118&partnerID=8YFLogxK
U2 - 10.1137/1.9781611973099.79
DO - 10.1137/1.9781611973099.79
M3 - ???researchoutput.researchoutputtypes.contributiontobookanthology.conference???
AN - SCOPUS:84860119118
SN - 9781611972108
T3 - Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms
SP - 993
EP - 1005
BT - Proceedings of the 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
PB - Association for Computing Machinery
T2 - 23rd Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012
Y2 - 17 January 2012 through 19 January 2012
ER -