TY - JOUR
T1 - Bicorannulenyl
T2 - Stereochemistry of a C40H18 biaryl composed of two chiral bowls
AU - Eisenberg, David
AU - Filatov, Alexander S.
AU - Jackson, Edward A.
AU - Rabinovitz, Mordecai
AU - Petrukhina, Marina A.
AU - Scott, Lawrence T.
AU - Shenhar, Roy
PY - 2008/8/15
Y1 - 2008/8/15
N2 - (Figure Presented) The bicorannulenyl molecule is composed of two chiral bowls tethered by a single bond in a helical fashion. This simple combination of two chiral motifs gives rise to rich dynamic stereochemistry, where 12 conformers interconvert through bowl inversions and central bond rotation, and enantiomerizations occur via multistep processes. Interestingly, 8 out of 10 transition states are chiral, giving rise to mostly chiral enantiomerization pathways, where the molecule changes chirality without passing through an achiral conformation. However, analysis of the stereochemical landscape by DFT calculations and variable temperature NMR spectroscopy reveals that the energetically most favorable enantiomerization pathway passes through one of the two achiral transition states. Single-crystal X-ray diffraction corroborates the DFT results and provides information on packing modes of bicorannulenyl molecules in the solid state that have not been seen previously for other buckybowls.
AB - (Figure Presented) The bicorannulenyl molecule is composed of two chiral bowls tethered by a single bond in a helical fashion. This simple combination of two chiral motifs gives rise to rich dynamic stereochemistry, where 12 conformers interconvert through bowl inversions and central bond rotation, and enantiomerizations occur via multistep processes. Interestingly, 8 out of 10 transition states are chiral, giving rise to mostly chiral enantiomerization pathways, where the molecule changes chirality without passing through an achiral conformation. However, analysis of the stereochemical landscape by DFT calculations and variable temperature NMR spectroscopy reveals that the energetically most favorable enantiomerization pathway passes through one of the two achiral transition states. Single-crystal X-ray diffraction corroborates the DFT results and provides information on packing modes of bicorannulenyl molecules in the solid state that have not been seen previously for other buckybowls.
UR - http://www.scopus.com/inward/record.url?scp=50149089990&partnerID=8YFLogxK
U2 - 10.1021/jo800359z
DO - 10.1021/jo800359z
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:50149089990
SN - 0022-3263
VL - 73
SP - 6073
EP - 6078
JO - Journal of Organic Chemistry
JF - Journal of Organic Chemistry
IS - 16
ER -