Biologically active, high levels of interleukin-22 inhibit hepatic gluconeogenesis but do not affect obesity and its metabolic consequences

Ogyi Park, Sung Hwan Ki, Mingjiang Xu, Hua Wang, Dechun Feng, Joseph Tam, Douglas Osei-Hyiaman, George Kunos, Bin Gao*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

31 Scopus citations

Abstract

Background: Interleukin-22 (IL-22), a cytokine with important functions in anti-microbial defense and tissue repair, has been recently suggested to have beneficial effects in obesity and metabolic syndrome in some but not in other studies. Here, we re-examined the effects of IL-22 on obesity, insulin resistance, and hepatic glucose metabolism. Results: Genetic deletion of IL-22 did not affect high-fat-diet (HFD)-induced obesity and insulin resistance. IL-22 transgenic mice with relatively high levels of circulating IL-22 (~600 pg/ml) were completely resistant to Concanavalin A-induced liver injury but developed the same degree of high fat diet (HFD)-induced obesity, insulin resistance, and fatty liver as the wild-type littermate controls. Similarly, chronic treatment with recombinant mouse IL-22 (rmIL-22) protein did not affect HFD-induced obesity and the associated metabolic syndrome. In vivo treatment with a single dose of rmIL-22 downregulated the hepatic expression of gluconeogenic genes and subsequently inhibited hepatic gluconeogenesis and reduced blood glucose levels both in HFD-fed and streptozotocin (STZ)-treated mice without affecting insulin production. In vitro exposure of mouse primary hepatocytes to IL-22 suppressed glucose production and the expression of gluconeogenic genes. These inhibitory effects were partially reversed by blocking STAT3 or the AMPK signaling pathway. Conclusion: Biologically active, high levels of IL-22 do not affect obesity and the associated metabolic syndrome. Acute treatment with IL-22 inhibits hepatic gluconeogenesis, which is mediated via the activation of STAT3 and AMPK in hepatocytes.

Original languageEnglish
Article number25
JournalCell and Bioscience
Volume5
Issue number1
DOIs
StatePublished - 30 May 2015

Bibliographical note

Publisher Copyright:
© 2015 Park et al.; licensee BioMed Central.

Keywords

  • Cytokine
  • Hyperglycemia
  • Insulin resistance
  • Liver
  • Obesity

Fingerprint

Dive into the research topics of 'Biologically active, high levels of interleukin-22 inhibit hepatic gluconeogenesis but do not affect obesity and its metabolic consequences'. Together they form a unique fingerprint.

Cite this