Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals

Amit Rivkin, Tiffany Abitbol*, Yuval Nevo, Ronen Verker, Shaul Lapidot, Anton Komarov, Stephen C. Veldhuis, Galit Zilberman, Meital Reches, Emily D. Cranston, Oded Shoseyov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

27 Scopus citations

Abstract

This research explores the properties of bionanocomposite films prepared by binding recombinant resilin-like protein (res) consisting of the exon 1 resilin sequence from Drosophila melanogaster engineered to include a cellulose binding domain (CBD), to cellulose nanocrystals (CNCs). The optimal binding of res-CBD to CNCs was 1:5 by mass, and the resulting res-CBD-CNCs remained colloidally stable in water. Res-CBD-CNCs were solvent cast into transparent, free-standing films, which were more hydrophobic than neat CNC films, with water contact angles of 70-80 compared to 35-40 for the latter. In contrast to the multi-domain orientation typical of chiral nematic CNC films, res-CBD-CNC and CBD-CNC films exhibited long-range, uniaxial orientation that was apparently driven by the CBD moiety. Glycerol was studied as an additive in the films to determine whether the addition of a wet component to solvate the recombinant protein improved the mechanical properties of the res-CBD-CNC films. In comparison to the other films, res-CBD-CNC films were more elastic with added glycerol, demonstrating a range of 0.5-5wt% (i.e., the films responded more elastically to a given strain and/or were less plastically deformed by a given mechanical load), but became less elastic with added glycerol between 0.5-5wt%. Overall, films made of res-CBD-CNCs plus 0.5wt% glycerol displayed improved mechanical properties compared to neat CNC films, and with an increase in toughness of 150% and in elasticity of 100%.

Original languageEnglish
Pages (from-to)44-58
Number of pages15
JournalIndustrial Biotechnology
Volume11
Issue number1
DOIs
StatePublished - 1 Feb 2015

Bibliographical note

Publisher Copyright:
© Copyright 2015, Mary Ann Liebert, Inc.

Fingerprint

Dive into the research topics of 'Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals'. Together they form a unique fingerprint.

Cite this