TY - JOUR
T1 - Bionanocomposite films from resilin-CBD bound to cellulose nanocrystals
AU - Rivkin, Amit
AU - Abitbol, Tiffany
AU - Nevo, Yuval
AU - Verker, Ronen
AU - Lapidot, Shaul
AU - Komarov, Anton
AU - Veldhuis, Stephen C.
AU - Zilberman, Galit
AU - Reches, Meital
AU - Cranston, Emily D.
AU - Shoseyov, Oded
N1 - Publisher Copyright:
© Copyright 2015, Mary Ann Liebert, Inc.
PY - 2015/2/1
Y1 - 2015/2/1
N2 - This research explores the properties of bionanocomposite films prepared by binding recombinant resilin-like protein (res) consisting of the exon 1 resilin sequence from Drosophila melanogaster engineered to include a cellulose binding domain (CBD), to cellulose nanocrystals (CNCs). The optimal binding of res-CBD to CNCs was 1:5 by mass, and the resulting res-CBD-CNCs remained colloidally stable in water. Res-CBD-CNCs were solvent cast into transparent, free-standing films, which were more hydrophobic than neat CNC films, with water contact angles of 70-80 compared to 35-40 for the latter. In contrast to the multi-domain orientation typical of chiral nematic CNC films, res-CBD-CNC and CBD-CNC films exhibited long-range, uniaxial orientation that was apparently driven by the CBD moiety. Glycerol was studied as an additive in the films to determine whether the addition of a wet component to solvate the recombinant protein improved the mechanical properties of the res-CBD-CNC films. In comparison to the other films, res-CBD-CNC films were more elastic with added glycerol, demonstrating a range of 0.5-5wt% (i.e., the films responded more elastically to a given strain and/or were less plastically deformed by a given mechanical load), but became less elastic with added glycerol between 0.5-5wt%. Overall, films made of res-CBD-CNCs plus 0.5wt% glycerol displayed improved mechanical properties compared to neat CNC films, and with an increase in toughness of 150% and in elasticity of 100%.
AB - This research explores the properties of bionanocomposite films prepared by binding recombinant resilin-like protein (res) consisting of the exon 1 resilin sequence from Drosophila melanogaster engineered to include a cellulose binding domain (CBD), to cellulose nanocrystals (CNCs). The optimal binding of res-CBD to CNCs was 1:5 by mass, and the resulting res-CBD-CNCs remained colloidally stable in water. Res-CBD-CNCs were solvent cast into transparent, free-standing films, which were more hydrophobic than neat CNC films, with water contact angles of 70-80 compared to 35-40 for the latter. In contrast to the multi-domain orientation typical of chiral nematic CNC films, res-CBD-CNC and CBD-CNC films exhibited long-range, uniaxial orientation that was apparently driven by the CBD moiety. Glycerol was studied as an additive in the films to determine whether the addition of a wet component to solvate the recombinant protein improved the mechanical properties of the res-CBD-CNC films. In comparison to the other films, res-CBD-CNC films were more elastic with added glycerol, demonstrating a range of 0.5-5wt% (i.e., the films responded more elastically to a given strain and/or were less plastically deformed by a given mechanical load), but became less elastic with added glycerol between 0.5-5wt%. Overall, films made of res-CBD-CNCs plus 0.5wt% glycerol displayed improved mechanical properties compared to neat CNC films, and with an increase in toughness of 150% and in elasticity of 100%.
UR - http://www.scopus.com/inward/record.url?scp=84923091625&partnerID=8YFLogxK
U2 - 10.1089/ind.2014.0026
DO - 10.1089/ind.2014.0026
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:84923091625
SN - 1550-9087
VL - 11
SP - 44
EP - 58
JO - Industrial Biotechnology
JF - Industrial Biotechnology
IS - 1
ER -