Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity

Nechama Silverstein, Alaa Sliman, Thomas Stockner, Baruch I. Kanner*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

4 Scopus citations

Abstract

In the brain, glutamate transporters terminate excitatory neurotransmission by removing this neurotransmitter from the synapse via cotransport with three sodium ions into the surrounding cells.Structural studies have identified the binding sites of the three sodium ions in glutamate transporters.The residue side-chains directly interact with the sodium ions at the Na1 and Na3 sites and are fully conserved from archaeal to eukaryotic glutamate transporters. The Na2 site is formed by three main-chain oxygens on the extracellular reentrant hairpin loop HP2 and one on transmembrane helix 7.A glycine residue on HP2 is located closely to the three main-chain oxygens in all glutamate transporters, except for the astroglial transporter GLT-1,which has a serine residue at that position. Unlike for WTGLT-1,substitution of the serine residue to glycine enables sustained glutamate transport also when sodium is replaced by lithium.Here, using functional and simulation studies, we studied the role of this serine/glycine switch on cation selectivity of substrate transport.Our results indicate that the side-chain oxygen of the serine residues can form a hydrogen bond with a main-chain oxygen on transmembrane helix 7.This leads to an expansion of the Na2 site such that water can participate in sodium coordination at Na2.Furthermore,we found other molecular determinants of cation selectivity on the nearby HP1 loop.Weconclude that subtle changes in the composition of the two reentrant hairpin loops determine the cation specificity of acidic amino acid transport by glutamate transporters.

Original languageEnglish
Pages (from-to)14200-14209
Number of pages10
JournalJournal of Biological Chemistry
Volume293
Issue number37
DOIs
StatePublished - 14 Sep 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
©2018 The American Society for Biochemistry and Molecular Biology,Inc.

Fingerprint

Dive into the research topics of 'Both reentrant loops of the sodium-coupled glutamate transporters contain molecular determinants of cation selectivity'. Together they form a unique fingerprint.

Cite this