Abstract
The current study aimed at investigating the long-term biological mechanisms governing bone regeneration in osseous defects filled with bovine bone (BB). Tooth extraction sockets were filled with BB or left unfilled for natural healing in a C57BL/6 mouse alveolar regeneration bone model (n = 12). Seven weeks later, the alveolar bone samples were analyzed histologically with hematoxylin/eosin and tartrate-resistant acid phosphatase staining. A separate group (n = 10) was used for RNA sequencing. Osteoclast inhibition was induced by zoledronic acid (ZA) administration at 2 wk postextraction in a third group (n = 28) for examination of osseous changes and cellular functions with micro–computed tomography and quantitative reverse transcription polymerase chain reaction, respectively. Histological and radiological osseous healing was observed in both BB-filled and normal-healing sockets. However, BB regenerated bone showed significant robust expression of genes associated with bone homeostasis and osteoclasts’ function. Osteoclasts’ inhibition in BB-filled sockets led to decreased bone resorption markers and reduced bone formation to a greater extent than that observed in osteoclasts’ inhibition with natural healing. BB displays long-term biologically active properties, despite a naive osseous histological appearance. These include activation of osteoclasts, which in turn promotes osseous remodeling and maturation of ossified bone.
Original language | English |
---|---|
Pages (from-to) | 820-829 |
Number of pages | 10 |
Journal | Journal of Dental Research |
Volume | 99 |
Issue number | 7 |
DOIs | |
State | Published - 1 Jul 2020 |
Bibliographical note
Publisher Copyright:© International & American Associations for Dental Research 2020.
Keywords
- bone regeneration
- bone remodeling
- gene expression
- histological healing
- osteoclastogenesis
- tissue healing