Branching Random Walk with exponentially decreasing steps, and stochastically self-similar measures

Itai Benjamini*, Ori Gurel-Gurevich, Boris Solomyak

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

We consider a Branching Random Walk on ℝ whose step size decreases by a fixed factor, 0 < λ < 1, with each turn. This process generates a random probability measure on ℝ; that is, the limit of uniform distribution among the 2n particles of the n-th step. We present an initial investigation of the limit measure and its support. We show, in particular, that (1) for almost every λ > 1/2 the limit measure is almost surely (a.s.) absolutely continuous with respect to the Lebesgue measure, but for Pisot 1/λ it is a.s. singular; (2) for all λ > (√5-1)/2 the support of the measure is a.s. the closure of its interior; (3) for Pisot 1/λ the support of the measure is "fractured": it is a.s. disconnected, and the components of the complement are not isolated on both sides.

Original languageEnglish
Pages (from-to)1625-1643
Number of pages19
JournalTransactions of the American Mathematical Society
Volume361
Issue number3
DOIs
StatePublished - Mar 2009
Externally publishedYes

Keywords

  • Bernoulli convolutions
  • Random fractal measures

Fingerprint

Dive into the research topics of 'Branching Random Walk with exponentially decreasing steps, and stochastically self-similar measures'. Together they form a unique fingerprint.

Cite this