Abstract
The branching ratio Γα/Γγ of the 4.033 MeV 3/2+ state in 19Ne plays a crucial role in the breakout from the hot CNO cycle into the rapid proton capture process. This ratio has been studied by making use of the advantages of inverse kinematics. The state was populated via the 3He(20Ne,α) 19Ne* reaction and its decay via γ or α emission was measured by detecting the heavy reaction products (19Ne or 15O) in coincidence in a magnetic spectrograph. An upper limit Γα/Γγ≤6×10-4 has been obtained. With these results, the astrophysical reaction rate for the 15O (α, γ) 19Ne reaction has been calculated. Its influence on the breakout at various astrophysical sites, novas, x-ray bursts, and supermassive stars, is discussed.
Original language | English |
---|---|
Article number | 065809 |
Pages (from-to) | 658091-658099 |
Number of pages | 9 |
Journal | Physical Review C - Nuclear Physics |
Volume | 67 |
Issue number | 6 |
DOIs | |
State | Published - Jun 2003 |