Abstract
Semiconducting nanowires are widely studied as building blocks for electro-optical devices; however, their limited cross-section and hence photo-response hinder the utilization of their full potential. Herein, we present an opto-electronic device for broad spectral detection ranging from the visible (VIS) to the short wavelength infra-red (SWIR) regime, using SiGe nanowires coupled to a broadband plasmonic antenna. The plasmonic amplification is obtained by deposition of a metallic nanotip at the edge of a nanowire utilizing a bottom-up synthesis technique. The metallic nanotip is positioned such that both optical plasmonic modes and electrical detection paths are coupled, resulting in a specific detectivity improvement of ∼1000 compared to conventional SiGe NWs. Detectivity and high gain are also measured in the SWIR regime owing to the special plasmonic response. Furthermore, the temporal response is improved by ∼1000. The fabrication process is simple and scalable, and it relies on low-resolution and facile fabrication steps with minimal requirements for top-down techniques.
Original language | English |
---|---|
Pages (from-to) | 6368-6376 |
Number of pages | 9 |
Journal | Nanoscale |
Volume | 11 |
Issue number | 13 |
DOIs | |
State | Published - 2019 |
Bibliographical note
Publisher Copyright:© The Royal Society of Chemistry.