Broadband, electrically tunable third-harmonic generation in graphene

Giancarlo Soavi, Gang Wang, Habib Rostami, David G. Purdie, Domenico De Fazio, Teng Ma, Birong Luo, Junjia Wang, Anna K. Ott, Duhee Yoon, Sean A. Bourelle, Jakob E. Muench, Ilya Goykhman, Stefano Dal Conte, Michele Celebrano, Andrea Tomadin, Marco Polini, Giulio Cerullo, Andrea C. Ferrari*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

235 Scopus citations

Abstract

Optical harmonic generation occurs when high intensity light (>1010 W m- 2) interacts with a nonlinear material. Electrical control of the nonlinear optical response enables applications such as gate-tunable switches and frequency converters. Graphene displays exceptionally strong light-matter interaction and electrically and broadband tunable third-order nonlinear susceptibility. Here, we show that the third-harmonic generation efficiency in graphene can be increased by almost two orders of magnitude by controlling the Fermi energy and the incident photon energy. This enhancement is due to logarithmic resonances in the imaginary part of the nonlinear conductivity arising from resonant multiphoton transitions. Thanks to the linear dispersion of the massless Dirac fermions, gate controllable third-harmonic enhancement can be achieved over an ultrabroad bandwidth, paving the way for electrically tunable broadband frequency converters for applications in optical communications and signal processing.

Original languageEnglish
Pages (from-to)583-588
Number of pages6
JournalNature Nanotechnology
Volume13
Issue number7
DOIs
StatePublished - 1 Jul 2018
Externally publishedYes

Bibliographical note

Publisher Copyright:
© 2018 The Author(s).

Fingerprint

Dive into the research topics of 'Broadband, electrically tunable third-harmonic generation in graphene'. Together they form a unique fingerprint.

Cite this