Abstract
We investigate the collective motion of a two-dimensional disordered ensemble of droplets in a microfluidic channel far from equilibrium and at Reynolds number □10-4. The ensemble carries ultraslow shock waves and sound, propagating at □100μms̄1 and superposed on diffusive droplets motion. These modes are induced by long-range hydrodynamic dipolar interactions between droplets, the result of the symmetry breaking flow. The modes obey the Burgers equation due to a local coupling between droplets velocity and number density. This stems from a singular effect of the channel sidewall boundaries upon summation of the hydrodynamic interaction in two dimensions.
Original language | English |
---|---|
Article number | 114502 |
Journal | Physical Review Letters |
Volume | 103 |
Issue number | 11 |
DOIs | |
State | Published - 11 Sep 2009 |
Externally published | Yes |