Cards Against AI: Predicting Humor in a Fill-in-the-blank Party Game

Dan Ofer, Dafna Shahaf

Research output: Contribution to conferencePaperpeer-review

1 Scopus citations

Abstract

Humor is an inherently social phenomenon, with humorous utterances shaped by what is socially and culturally accepted. Understanding humor is an important NLP challenge, with many applications to human-computer interactions. In this work we explore humor in the context of Cards Against Humanity - a party game where players complete fill-in-the-blank statements using cards that can be offensive or politically incorrect. We introduce a novel dataset of 300,000 online games of Cards Against Humanity, including 785K unique jokes, analyze it and provide insights. We trained machine learning models to predict the winning joke per game, achieving performance twice as good (20%) as random, even without any user information. On the more difficult task of judging novel cards, we see the models' ability to generalize is moderate. Interestingly, we find that our models are primarily focused on punchline card, with the context having little impact. Analyzing feature importance, we observe that short, crude, juvenile punchlines tend to win.

Original languageAmerican English
Pages5426-5432
Number of pages7
StatePublished - 2022
Event2022 Findings of the Association for Computational Linguistics: EMNLP 2022 - Abu Dhabi, United Arab Emirates
Duration: 7 Dec 202211 Dec 2022

Conference

Conference2022 Findings of the Association for Computational Linguistics: EMNLP 2022
Country/TerritoryUnited Arab Emirates
CityAbu Dhabi
Period7/12/2211/12/22

Bibliographical note

Publisher Copyright:
© 2022 Association for Computational Linguistics.

Fingerprint

Dive into the research topics of 'Cards Against AI: Predicting Humor in a Fill-in-the-blank Party Game'. Together they form a unique fingerprint.

Cite this