TY - JOUR
T1 - Cascaded, Feedback-Driven, and Spatially Localized Emergence of Constitutional Dynamic Networks Driven by Enzyme-Free Catalytic DNA Circuits
AU - Zhou, Zhixin
AU - Lin, Nina
AU - Ouyang, Yu
AU - Liu, Songqin
AU - Zhang, Yuanjian
AU - Willner, Itamar
N1 - Publisher Copyright:
© 2023 The Authors. Published by American Chemical Society.
PY - 2023/6/14
Y1 - 2023/6/14
N2 - The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.
AB - The enzyme-free catalytic hairpin assembly (CHA) process is introduced as a functional reaction module for guided, high-throughput, emergence, and evolution of constitutional dynamic networks, CDNs, from a set of nucleic acids. The process is applied to assemble networks of variable complexities, functionalities, and spatial confinement, and the systems provide possible mechanistic pathways for the evolution of dynamic networks under prebiotic conditions. Subjecting a set of four or six structurally engineered hairpins to a promoter P1 leads to the CHA-guided emergence of a [2 × 2] CDN or the evolution of a [3 × 3] CDN, respectively. Reacting of a set of branched three-arm DNA-hairpin-functionalized junctions to the promoter strand activates the CHA-induced emergence of a three-dimensional (3D) CDN framework emulating native gene regulatory networks. In addition, activation of a two-layer CHA cascade circuit or a cross-catalytic CHA circuit and cascaded driving feedback-driven evolution of CDNs are demonstrated. Also, subjecting a four-hairpin-modified DNA tetrahedron nanostructure to an auxiliary promoter strand simulates the evolution of a dynamically equilibrated DNA tetrahedron-based CDN that undergoes secondary fueled dynamic reconfiguration. Finally, the effective permeation of DNA tetrahedron structures into cells is utilized to integrate the four-hairpin-functionalized tetrahedron reaction module into cells. The spatially localized miRNA-triggered CHA evolution and reconfiguration of CDNs allowed the logic-gated imaging of intracellular RNAs. Beyond the bioanalytical applications of the systems, the study introduces possible mechanistic pathways for the evolution of functional networks under prebiotic conditions.
UR - http://www.scopus.com/inward/record.url?scp=85162909282&partnerID=8YFLogxK
U2 - 10.1021/jacs.3c02083
DO - 10.1021/jacs.3c02083
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 37257165
AN - SCOPUS:85162909282
SN - 0002-7863
VL - 145
SP - 12617
EP - 12629
JO - Journal of the American Chemical Society
JF - Journal of the American Chemical Society
IS - 23
ER -