Cellular changes during renal failure-induced inflammatory aortic valve disease

Mony Shuvy, Suzan Abedat, Mahmoud Mustafa, Nitsan Duvdevan, Karen Meir, Ronen Beeri, Chaim Lotan

Research output: Contribution to journalArticlepeer-review

2 Scopus citations

Abstract

Background: Aortic valve calcification (AVC) secondary to renal failure (RF) is an inflammation-regulated process, but its pathogenesis remains unknown. We sought to assess the cellular processes that are involved in the early phases of aortic valve disease using a unique animal model of RF-associated AVC. Methods: Aortic valves were obtained from rats that were fed a uremia-inducing diet exclusively for 2, 3, 4, 5, and 6 weeks as well as from controls. Pathological examination of the valves included histological characterization, von Kossa staining, and antigen expression analyses. Results: After 2 weeks, we noted a significant increase in urea and creatinine levels, reflecting RF. RF parameters exacerbated until the Week 5 and plateaued. Whereas no histological changes or calcification was observed in the valves of any study group, macrophage accumulation became apparent as early as 2 weeks after the diet was started and rose after 3 weeks. By western blot, osteoblast markers were expressed after 2 weeks on the diet and decreased after 6 weeks. Collagen 3 was up-regulated after 3 weeks, plateauing at 4 weeks, whereas collagen 1 levels peaked at 2 and 4 weeks. Fibronectin levels increased gradually until Week 5 and decreased at 6 weeks. We observed early activation of the ERK pathway, whereas other pathways remained unchanged. Conclusions: We concluded that RF induces dramatic changes at the cellular level, including macrophage accumulation, activation of cell signaling pathway and extracellular matrix modification. These changes precede valve calcification and may increase propensity for calcification, and have to be investigated further.

Original languageEnglish
Article numbere0129725
JournalPLoS ONE
Volume10
Issue number6
DOIs
StatePublished - 12 Jun 2015

Bibliographical note

Publisher Copyright:
© 2015 Shuvy et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Fingerprint

Dive into the research topics of 'Cellular changes during renal failure-induced inflammatory aortic valve disease'. Together they form a unique fingerprint.

Cite this