Cellulose Nanocrystals (CNCs) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films

Tal Ben Shalom*, Yuval Nevo, David Leibler, Zvi Shtein, Clarite Azerraf, Shaul Lapidot, Oded Shoseyov

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

37 Scopus citations

Abstract

This study is aimed to explore the properties of cellulose nanocrystals (CNC)/polyvinyl alcohol (PVA) composite films with and without 1,2,3,4-butane tetracarboxylic acid (BTCA), a nontoxic crosslinker. CNC and CNC-PVA nanocomposite films are prepared using solution-casting technique. Differential scanning calorimetry (DSC) analyses show that crosslinking increased the glass transition temperature but reduced the melting temperature and crystallinity. Furthermore, high CNC concentrations in the PVA matrix interfere with PVA crystallinity, whereas in specific ratio between CNC and PVA, two different crystalline structures are observed within the PVA matrix. Film surfaces and fracture topographies characterized using scanning electron microscope indicate that at certain CNC-PVA ratios, micron-sized needle-like crystals have formed. These crystalline structures correlate with the remarkable improvement in mechanical properties of the CNC-PVA nanocomposite films, that is, enhanced tensile strain and toughness to 570% and 202 MJ m−3, respectively, as compared to pristine PVA. BTCA enhances the tensile strain, ultimate tensile stress, toughness, and modulus of CNC films compared to pristine CNC films. Water absorption of crosslinked CNC and CNC-PVA nanocomposite films is significantly reduced, while film transparency is significantly improved as a function of PVA and crosslinker content. The presented results indicate that CNC-PVA nanocomposite films may find applications in packaging, and though materials applications.

Original languageAmerican English
Article number1800347
JournalMacromolecular Bioscience
Volume19
Issue number3
DOIs
StatePublished - 1 Mar 2019

Bibliographical note

Publisher Copyright:
© 2019 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Keywords

  • biodegradable films
  • bionanocomposite
  • nanocellulose
  • polyvinyl alcohol

Fingerprint

Dive into the research topics of 'Cellulose Nanocrystals (CNCs) Induced Crystallization of Polyvinyl Alcohol (PVA) Super Performing Nanocomposite Films'. Together they form a unique fingerprint.

Cite this