TY - JOUR
T1 - Central and peripheral contributions to control of heart rate during heat acclimation
AU - Horowitz, Michael
AU - Meiri, Uri
PY - 1993/1
Y1 - 1993/1
N2 - The contributions of the autonomic nervous system and the cardiac pacing cells in the development of heat-acclimation-induced bradycardia were analyzed, and the effect of heat acclimation on the chronotropic response of the heart to heat stress (40° C) was studied. Rats were acclimated at 34° C for 0, 5, 14, 30 and 60 days. Heart rate (HR) was measured in conscious animals, using chronic subcutaneous electrodes. Sympathetic and parasympathetic influences were studied by IP administration of 0.1 and 1 mg/100 g body weight atropine and propranolol respectively, while intrinsic HR (HRi) was measured following administration of both drugs simultaneously. The effects of carbamylcholine and norepinephrine on the beating rate of isolated rat atria were investigated to study pacemaker responsiveness to neutrotransmitters. Up to day 14 of heat acclimation, bradycardia was attained by tonic parasympathetic acceleration (18%) and temporal sympathetic withdrawal (0.8% on day 14), to compensate for the gradually augmented HRi (2.5% and 8% on days 5 and 14, respectively). Following long-term acclimation HRi declined below pre-acclimation rate. This was associated with resumed sympathetic activity (16% and 10% on days 30 and 60 respectively) while parasympathetic activity continued to be high (18%). Tachycardia, known to occur with severe uncontrolled body hyperthermia, was attenuated following heat acclimation by 42%. It was concluded that during the initial phase of heat acclimation bradycardia is achieved primarily by changes in autonomic influences, while following long-term acclimation, changes in the intrinsic properties of the pacing cells (HRi) and the autonomic system both play a role.
AB - The contributions of the autonomic nervous system and the cardiac pacing cells in the development of heat-acclimation-induced bradycardia were analyzed, and the effect of heat acclimation on the chronotropic response of the heart to heat stress (40° C) was studied. Rats were acclimated at 34° C for 0, 5, 14, 30 and 60 days. Heart rate (HR) was measured in conscious animals, using chronic subcutaneous electrodes. Sympathetic and parasympathetic influences were studied by IP administration of 0.1 and 1 mg/100 g body weight atropine and propranolol respectively, while intrinsic HR (HRi) was measured following administration of both drugs simultaneously. The effects of carbamylcholine and norepinephrine on the beating rate of isolated rat atria were investigated to study pacemaker responsiveness to neutrotransmitters. Up to day 14 of heat acclimation, bradycardia was attained by tonic parasympathetic acceleration (18%) and temporal sympathetic withdrawal (0.8% on day 14), to compensate for the gradually augmented HRi (2.5% and 8% on days 5 and 14, respectively). Following long-term acclimation HRi declined below pre-acclimation rate. This was associated with resumed sympathetic activity (16% and 10% on days 30 and 60 respectively) while parasympathetic activity continued to be high (18%). Tachycardia, known to occur with severe uncontrolled body hyperthermia, was attenuated following heat acclimation by 42%. It was concluded that during the initial phase of heat acclimation bradycardia is achieved primarily by changes in autonomic influences, while following long-term acclimation, changes in the intrinsic properties of the pacing cells (HRi) and the autonomic system both play a role.
KW - Autonomic system
KW - Body temperature
KW - Bradycardia
KW - Heat acclimation
KW - Pacemaker responsiveness
UR - http://www.scopus.com/inward/record.url?scp=0027408319&partnerID=8YFLogxK
U2 - 10.1007/BF00374295
DO - 10.1007/BF00374295
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 8437889
AN - SCOPUS:0027408319
SN - 0031-6768
VL - 422
SP - 386
EP - 392
JO - Pflugers Archiv European Journal of Physiology
JF - Pflugers Archiv European Journal of Physiology
IS - 4
ER -