Cerebellar output shapes cortical preparatory activity during motor adaptation

Sharon Israely, Hugo Ninou, Ori Rajchert, Lee Elmaleh, Ran Harel, Firas Mawase, Jonathan Kadmon*, Yifat Prut*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

Abstract

The cerebellum plays a key role in motor adaptation by driving trial-to-trial recalibration of movements based on previous errors. In primates, cortical correlates of adaptation are encoded already in the pre-movement motor plan, but these early cortical signals could be driven by a cerebellar-to-cortical information flow or evolve independently through intracortical mechanisms. To address this question, we trained female macaque monkeys to reach against a viscous force field (FF) while blocking cerebellar outflow. The cerebellar block led to impaired FF adaptation and a compensatory, re-aiming-like shift in motor cortical preparatory activity. In the null-field conditions, the cerebellar block altered neural preparatory activity by increasing task-representation dimensionality and impeding generalization. A computational model indicated that low-dimensional (cerebellar-like) feedback is sufficient to replicate these findings. We conclude that cerebellar signals carry task structure information that constrains the dimensionality of the cortical preparatory manifold and promotes generalization. In the absence of these signals, cortical mechanisms are harnessed to partially restore adaptation.

Original languageEnglish
Article number2574
JournalNature Communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

Fingerprint

Dive into the research topics of 'Cerebellar output shapes cortical preparatory activity during motor adaptation'. Together they form a unique fingerprint.

Cite this