Challenges and Opportunities in the Design of Liver-on-Chip Microdevices

Avner Ehrlich, Daniel Duche, Gladys Ouedraogo, Yaakov Nahmias

Research output: Contribution to journalReview articlepeer-review

74 Scopus citations

Abstract

The liver is the central hub of xenobiotic metabolism and consequently the organ most prone to cosmetic-and drug-induced toxicity. Failure to detect liver toxicity or to assess compound clearance during product development is a major cause of postmarketing product withdrawal, with disastrous clinical and financial consequences. While small animals are still the preferred model in drug development, the recent ban on animal use in the European Union created a pressing need to develop precise and efficient tools to detect human liver toxicity during cosmetic development. This article includes a brief review of liver development, organization, and function and focuses on the state of the art of long-term cell culture, including hepatocyte cell sources, heterotypic cell-cell interactions, oxygen demands, and culture medium formulation. Finally, the article reviews emerging liver-on-chip devices and discusses the advantages and pitfalls of individual designs. The goal of this review is to provide a framework to design liver-on-chip devices and criteria with which to evaluate this emerging technology.

Original languageAmerican English
Pages (from-to)219-239
Number of pages21
JournalAnnual Review of Biomedical Engineering
Volume21
DOIs
StatePublished - 2019

Bibliographical note

Publisher Copyright:
© 2019 by Annual Reviews All rights reserved.

Keywords

  • human on chip
  • in vitro models
  • liver
  • microphysiological systems
  • organ on chip

Fingerprint

Dive into the research topics of 'Challenges and Opportunities in the Design of Liver-on-Chip Microdevices'. Together they form a unique fingerprint.

Cite this