Abstract
Both the chaperonin- and MgATP-dependent reconstitution of unfolded ribulosebisphosphate carboxylase (Rubisco) and the uncoupled ATPase activity of chaperonin 60 (groEL) require ionic potassium. The spontaneous, chaperonin-independent reconstitution of Rubisco, observed at 15 but not at 25 °C, requires no K+ and is actually inhibited by chaperonin 60, with which the unfolded or partly folded Rubisco forms a stable binary complex. The chaperonin-dependent reconstitution of Rubisco involves the formation of a complex between chaperonin 60 and chaperonin 10 (groES). Formation of this complex almost completely inhibits the uncoupled ATPase activity of chaperonin 60. Furthermore, although the formation of the chaperonin 60-chaperonin 10 complex requires the presence of MgATP, hydrolysis of ATP may not be required, since complex formation occurs in the absence of K+. The interaction of chaperonin 60 with unfolded or partly folded Rubisco does not require MgATP, K+, or chaperonin 10. However, discharge of the complex of chaperonin 60-Rubisco, which leads to the formation of active Rubisco dimers, requires chaperonin 10 and a coupled, K+-dependent hydrolysis of ATP. We propose that a role of chaperonin 10 is to couple the K+-dependent hydrolysis of ATP to the release of the folded monomers of the target protein from chaperonin 60.
Original language | English |
---|---|
Pages (from-to) | 5665-5671 |
Number of pages | 7 |
Journal | Biochemistry |
Volume | 29 |
Issue number | 24 |
DOIs | |
State | Published - 19 Jun 1990 |
Externally published | Yes |