TY - JOUR
T1 - Characterization of an enantioselective odorant receptor in the yellow fever mosquito Aedes aegypti
AU - Bohbot, Jonathan D.
AU - Dickens, Joseph C.
PY - 2009/9/15
Y1 - 2009/9/15
N2 - Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(-)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
AB - Enantiomers differ only in the left or right handedness (chirality) of their orientations and exhibit identical chemical and physical properties. In chemical communication systems, enantiomers can be differentially active at the physiological and behavioral levels. Only recently were enantioselective odorant receptors demonstrated in mammals while their existence in insects has remained hypothetical. Using the two-microelectrode voltage clamp of Xenopus oocytes, we show that the yellow fever mosquito, Aedes aegypti, odorant receptor 8 (AaOR8) acts as a chiral selective receptor for the (R)-(-)-enantiomer of 1-octen-3-ol, which in the presence of other kairomones is an attractant used by blood-sucking insects to locate their hosts. In addition to steric constraints, chain length and degree of unsaturation play important roles in this recognition process. This is the first characterization of an enantioselective odorant receptor in insects and the results demonstrate that an OR alone, without helper proteins, can account for chiral specificity exhibited by olfactory sensory neurons (OSNs).
UR - http://www.scopus.com/inward/record.url?scp=70349280467&partnerID=8YFLogxK
U2 - 10.1371/journal.pone.0007032
DO - 10.1371/journal.pone.0007032
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 19753115
AN - SCOPUS:70349280467
SN - 1932-6203
VL - 4
JO - PLoS ONE
JF - PLoS ONE
IS - 9
M1 - e7032
ER -