Abstract
The MUon Scattering Experiment, MUSE, at the Paul Scherrer Institute, Switzerland, investigates the proton charge radius puzzle, lepton universality, and two-photon exchange, via simultaneous measurements of elastic muon-proton and electron-proton scattering. The experiment uses the PiM1 secondary beam channel, which was designed for high precision pion scattering measurements. We review the properties of the beam line established for pions. We discuss the production processes that generate the electron and muon beams, and the simulations of these processes. Simulations of the π/μ/e beams through the channel using TURTLE and G4beamline are compared. The G4beamline simulation is then compared to several experimental measurements of the channel, including the momentum dispersion at the intermediate focal plane and target, the shape of the beam spot at the target, and timing measurements that allow the beam momenta to be determined. We conclude that the PiM1 channel can be used for high precision π, μ, and e scattering.
Original language | English |
---|---|
Article number | 055201 |
Journal | Physical Review C |
Volume | 105 |
Issue number | 5 |
DOIs | |
State | Published - May 2022 |
Bibliographical note
Publisher Copyright:© 2022 American Physical Society.