Characterization of n-alkanethiol self-assembled monolayers on mercury by impedance spectroscopy and potentiometric measurements

Meirav Cohen-Atiya, Andrew Nelson, Daniel Mandler*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

30 Scopus citations


Long chain n-alkanethiol self-assembled monolayers (SAMs) on a hanging mercury drop electrode were studied in detail for the first time by impedance spectroscopy (IS) and potentiometry. IS reveals the detailed behavior of the monolayers in the absence and presence of two one-electron redox couple: hexaamineruthenium(III), Ru (NH3)63 + and tris(4,4′-bipyridine)cobalt(III), Co (bpy)33 +. The pinholes-free layers behave as almost ideal capacitors and are permeable to some extent to redox species, depending on their hydrophobicity. Interestingly, Co (bpy)33 + that exhibits sluggish kinetics on a bare Hg electrode reveals a more facile kinetics than Ru (NH3)63 + on an n-octadecanethiol/Hg interface. Potentiometric measurements recorded upon immersing the bare and SAM modified Hg electrode into a solution containing a mixture of the oxidized and reduced forms of the redox couples provide invaluable information on the charge transfer across the monolayer and its ohmic resistance. While Ru (NH3)63 + cannot freely penetrate into the monolayer and therefore establishes a potential difference across the monolayer; penetration of Co (bpy)32 + into the film causes the Fermi level of the Hg surface to attain the Nernst potential of the solution. Finally, we find that increasing the length of the alkane chain of the thiols increases linearly the ohmic resistance of the layer.

Original languageAmerican English
Pages (from-to)227-240
Number of pages14
JournalJournal of Electroanalytical Chemistry
Issue number1-2
StatePublished - 1 Aug 2006

Bibliographical note

Funding Information:
This study was supported by the German–Israeli Foundation (Contract No. 625-43.5/1999), the Israel Science Foundation (200/02) and by the European Community (BBMO, Contract No. LSSB-CT-2005-005199).


  • Cyclic voltammetry
  • Electron tunneling
  • Hg
  • Impedance spectroscopy
  • Mercury
  • Potentiometric measurements
  • Potentiometry
  • Self-assembled monolayers
  • Thiols
  • n-Alkanethiols


Dive into the research topics of 'Characterization of n-alkanethiol self-assembled monolayers on mercury by impedance spectroscopy and potentiometric measurements'. Together they form a unique fingerprint.

Cite this