Charge fractionalization in quantum wires

Hadar Steinberg*, Gilad Barak, Amir Yacoby, Loren N. Pfeiffer, Ken W. West, Bertrand I. Halperin, Karyn Le Hur

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

156 Scopus citations

Abstract

Although the unit of charge in nature is a fundamental constant, the charge of individual quasiparticles in some low-dimensional systems may be fractionalized. Quantum one-dimensional (1D) systems, for instance, are theoretically predicted to carry charge in units smaller than the electron charge e. Unlike 2D systems, the charge of these excitations is not quantized and depends directly on the strength of the Coulomb interactions. For example, in a 1D system with momentum conservation, it is predicted that the charge of a unidirectional electron that is injected into the wire decomposes into right-and left-moving charge excitations carrying fractional charges f0e and (1f0)e respectively. f0 approaches unity for non-interacting electrons and is less than one for repulsive interactions. Here, we provide the first experimental evidence for charge fractionalization in one dimension. Unidirectional electrons are injected at the bulk of a wire and the imbalance in the currents detected at two drains on opposite sides of the injection region is used to determine f0. Our results elucidate further the collective nature of electrons in one dimension.

Original languageEnglish
Pages (from-to)116-119
Number of pages4
JournalNature Physics
Volume4
Issue number2
DOIs
StatePublished - 21 Feb 2008
Externally publishedYes

Bibliographical note

Funding Information:
We would like to acknowledge useful discussions with Y. Oreg. This work is partly supported by the Israeli US Bi-national Science Foundation and by the US National Science Foundation under contract No. DMR-0707484. H.S. is supported by a grant from the Israeli Ministry of Science. Correspondence and requests for materials should be addressed to A.Y. Supplementary Information accompanies this paper on www.nature.com/naturephysics.

Fingerprint

Dive into the research topics of 'Charge fractionalization in quantum wires'. Together they form a unique fingerprint.

Cite this