Abstract
Although the unit of charge in nature is a fundamental constant, the charge of individual quasiparticles in some low-dimensional systems may be fractionalized. Quantum one-dimensional (1D) systems, for instance, are theoretically predicted to carry charge in units smaller than the electron charge e. Unlike 2D systems, the charge of these excitations is not quantized and depends directly on the strength of the Coulomb interactions. For example, in a 1D system with momentum conservation, it is predicted that the charge of a unidirectional electron that is injected into the wire decomposes into right-and left-moving charge excitations carrying fractional charges f0e and (1f0)e respectively. f0 approaches unity for non-interacting electrons and is less than one for repulsive interactions. Here, we provide the first experimental evidence for charge fractionalization in one dimension. Unidirectional electrons are injected at the bulk of a wire and the imbalance in the currents detected at two drains on opposite sides of the injection region is used to determine f0. Our results elucidate further the collective nature of electrons in one dimension.
Original language | English |
---|---|
Pages (from-to) | 116-119 |
Number of pages | 4 |
Journal | Nature Physics |
Volume | 4 |
Issue number | 2 |
DOIs | |
State | Published - 21 Feb 2008 |
Externally published | Yes |
Bibliographical note
Funding Information:We would like to acknowledge useful discussions with Y. Oreg. This work is partly supported by the Israeli US Bi-national Science Foundation and by the US National Science Foundation under contract No. DMR-0707484. H.S. is supported by a grant from the Israeli Ministry of Science. Correspondence and requests for materials should be addressed to A.Y. Supplementary Information accompanies this paper on www.nature.com/naturephysics.