Charge spectroscopy of Si nanocrystallites embedded in a SiO2 matrix

Irina V. Antonova, Vladimir A. Volodin, Efim P. Neustroev, Svetlana A. Smagulova, Jedrzej Jedrzejewsi, Isaac Balberg

Research output: Contribution to journalArticlepeer-review

17 Scopus citations

Abstract

In the present work we have determined the electronic levels in systems of Si nanocrystallites (NCs) embedded in the insulating matrix of silicon dioxide, SiO2, by employing the charge deep-level transient spectroscopy (Q -DLTS) technique. We have clearly shown that these levels are associated with the NCs. Correspondingly, we suggest that the levels that we found are associated mainly with two quantum confinement energies, 0.14 and 0.19 eV. These energies are shown to be consistent with the corresponding theoretical estimates for the presently studied Si-NCs/ SiO2 systems. The fact that these levels are almost fixed for the various samples studied suggests the importance of the bulk-surface coupling under quantum confinement conditions.

Original languageEnglish
Article number064306
JournalJournal of Applied Physics
Volume106
Issue number6
DOIs
StatePublished - 2009

Fingerprint

Dive into the research topics of 'Charge spectroscopy of Si nanocrystallites embedded in a SiO2 matrix'. Together they form a unique fingerprint.

Cite this