Abstract
The Erythrina corallodendron lectin (EcorL) crystallizes in monoclinic and hexagonal crystal forms. Comparison of the newly determined hexagonal form (PDB code 1fyu) with the monoclinic form shows that the dimeric structure of EcorL reflects the inherent biological structure of the protein and is not an artifact of the crystal packing. To further understand the factors determining the dimerization modes of legume lectins, EcorL, concanavalin A (ConA), and Griffonia simplicifolia (GS4) were taken as representatives of the three unique dimers found in the family. Six virtual homodimers were generated. The hydropathy, amino acid composition, and solvation energy were calculated for all nine homodimers. Each of the three native dimers has a distinct chemical composition. EcorL has a dominant hydrophobic component, and ConA has a strong polar component, but in GS4 the three components contribute equally to the interface. This distribution pattern at the interface is unique to the native dimers and distinct from the partition observed in the virtual dimers. Amino acid composition of other members of the family that dimerize like EcorL or ConA maintain the same pattern of amino acids distribution observed in EcorL and ConA. However, lectins that dimerize like GS4 do not show a particularly distinct distribution. In all cases, the calculated solvation energy of the native dimer was lower than that of the virtual dimers, suggesting that the observed mode of dimerization is the most stable organization for the given sequence and tertiary structure. The dimerization type cannot be predicted by sequence analysis.
Original language | English |
---|---|
Pages (from-to) | 753-761 |
Number of pages | 9 |
Journal | Protein Science |
Volume | 10 |
Issue number | 4 |
DOIs | |
State | Published - 2001 |
Keywords
- Hydropathy
- Lectins
- Protein interface
- Quaternary structure
- Solvation energy