TY - JOUR
T1 - Circadian rhythms confer a higher level of fitness to Arabidopsis plants
AU - Green, Rachel M.
AU - Tingay, Sonia
AU - Wang, Zhi Yong
AU - Tobin, Elaine M.
PY - 2002
Y1 - 2002
N2 - Circadian rhythms have been demonstrated in organisms across the taxonomic spectrum. In view of their widespread occurrence, the adaptive significance of these rhythms is of interest. We have previously shown that constitutive expression of the CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) gene in Arabidopsis plants (CCA1-ox) results in loss of circadian rhythmicity. Here, we demonstrate that these CCA1-ox plants retain the ability to respond to diurnal changes in light. Thus, transcript levels of several circadian-regulated genes, as well as CCA1 itself and the closely related LHY, oscillate robustly if CCA1-ox plants are grown under diurnal conditions. However, in contrast with wild-type plants in which transcript levels change in anticipation of the dark/light transitions, the CCA1-ox plants have lost the ability to anticipate this daily change in their environment. We have used CCA1-ox lines to examine the effects of loss of circadian regulation on the fitness of an organism. CCA1-ox plants flowered later, especially under long-day conditions, and were less viable under very short-day conditions than their wild-type counterparts. In addition, we demonstrate that two other circadian rhythm mutants, LHY-ox and elf3, have low-viability phenotypes. Our findings demonstrate the adaptive advantage of circadian rhythms in Arabidopsis.
AB - Circadian rhythms have been demonstrated in organisms across the taxonomic spectrum. In view of their widespread occurrence, the adaptive significance of these rhythms is of interest. We have previously shown that constitutive expression of the CCA1 (CIRCADIAN CLOCK ASSOCIATED 1) gene in Arabidopsis plants (CCA1-ox) results in loss of circadian rhythmicity. Here, we demonstrate that these CCA1-ox plants retain the ability to respond to diurnal changes in light. Thus, transcript levels of several circadian-regulated genes, as well as CCA1 itself and the closely related LHY, oscillate robustly if CCA1-ox plants are grown under diurnal conditions. However, in contrast with wild-type plants in which transcript levels change in anticipation of the dark/light transitions, the CCA1-ox plants have lost the ability to anticipate this daily change in their environment. We have used CCA1-ox lines to examine the effects of loss of circadian regulation on the fitness of an organism. CCA1-ox plants flowered later, especially under long-day conditions, and were less viable under very short-day conditions than their wild-type counterparts. In addition, we demonstrate that two other circadian rhythm mutants, LHY-ox and elf3, have low-viability phenotypes. Our findings demonstrate the adaptive advantage of circadian rhythms in Arabidopsis.
UR - http://www.scopus.com/inward/record.url?scp=0035983622&partnerID=8YFLogxK
U2 - 10.1104/pp.004374
DO - 10.1104/pp.004374
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 12068102
AN - SCOPUS:0035983622
SN - 0032-0889
VL - 129
SP - 576
EP - 584
JO - Plant Physiology
JF - Plant Physiology
IS - 2
ER -