TY - JOUR
T1 - Co-acquisition of mineral-bound iron and phosphorus by natural Trichodesmium colonies
AU - Shaked, Yeala
AU - de Beer, Dirk
AU - Wang, Siyuan
AU - Zhang, Futing
AU - Visser, Anna Neva
AU - Eichner, Meri
AU - Basu, Subhajit
N1 - Publisher Copyright:
© 2023 The Authors. Limnology and Oceanography published by Wiley Periodicals LLC on behalf of Association for the Sciences of Limnology and Oceanography.
PY - 2023/5
Y1 - 2023/5
N2 - Low iron (Fe) and phosphorus (P) ocean regions are often home to the globally important N2-fixing cyanobacterium Trichodesmium spp., which are physiologically adapted to Fe/P co-limitation. Given Trichodesmium's eminent ability to capture particles and the common associations between Fe and P in sediments and aerosols, we hypothesized that mineral bio-dissolution by Trichodesmium spp. may enable them to co-acquire Fe and P. We present a new sensitive assay to determine P uptake from particles, utilizing 33P-labeled ferrihydrite. To validate the method, we examined single natural Trichodesmium thiebautii colonies in a high-resolution radiotracer ß-imager, identifying strong colony-mineral interactions, efficient removal of external 33P-labeled ferrihydrite, and elevated 33P uptake in the colony core. Next, we determined bulk P uptake rates, comparing natural Red Sea colonies and P-limited Trichodesmium erythraeum cultures. Uptake rates by natural and cultured Trichodesmium were similar to P release rates from the mineral, suggesting tight coupling between dissolution and uptake. Finally, synthesizing P-ferrihydrite labeled with either 33P or 55Fe, we probed for Fe/P co-extraction by common microbial mineral solubilization pathways. Dissolution rates of ferrihydrite were accelerated by exogenous superoxide and strong Fe-chelator and subsequently enhanced 33P release and uptake by Trichodesmium. Our method and findings can facilitate further Fe/P co-acquisition studies and highlight the importance of biological mechanisms and microenvironments in controlling bioavailability and nutrient fluxes from particles.
AB - Low iron (Fe) and phosphorus (P) ocean regions are often home to the globally important N2-fixing cyanobacterium Trichodesmium spp., which are physiologically adapted to Fe/P co-limitation. Given Trichodesmium's eminent ability to capture particles and the common associations between Fe and P in sediments and aerosols, we hypothesized that mineral bio-dissolution by Trichodesmium spp. may enable them to co-acquire Fe and P. We present a new sensitive assay to determine P uptake from particles, utilizing 33P-labeled ferrihydrite. To validate the method, we examined single natural Trichodesmium thiebautii colonies in a high-resolution radiotracer ß-imager, identifying strong colony-mineral interactions, efficient removal of external 33P-labeled ferrihydrite, and elevated 33P uptake in the colony core. Next, we determined bulk P uptake rates, comparing natural Red Sea colonies and P-limited Trichodesmium erythraeum cultures. Uptake rates by natural and cultured Trichodesmium were similar to P release rates from the mineral, suggesting tight coupling between dissolution and uptake. Finally, synthesizing P-ferrihydrite labeled with either 33P or 55Fe, we probed for Fe/P co-extraction by common microbial mineral solubilization pathways. Dissolution rates of ferrihydrite were accelerated by exogenous superoxide and strong Fe-chelator and subsequently enhanced 33P release and uptake by Trichodesmium. Our method and findings can facilitate further Fe/P co-acquisition studies and highlight the importance of biological mechanisms and microenvironments in controlling bioavailability and nutrient fluxes from particles.
UR - http://www.scopus.com/inward/record.url?scp=85149622502&partnerID=8YFLogxK
U2 - 10.1002/lno.12329
DO - 10.1002/lno.12329
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
AN - SCOPUS:85149622502
SN - 0024-3590
VL - 68
SP - 1064
EP - 1077
JO - Limnology and Oceanography
JF - Limnology and Oceanography
IS - 5
ER -