Coding schemes in neural networks learning classification tasks

Alexander van Meegen*, Haim Sompolinsky*

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1 Scopus citations

Abstract

Neural networks posses the crucial ability to generate meaningful representations of task-dependent features. Indeed, with appropriate scaling, supervised learning in neural networks can result in strong, task-dependent feature learning. However, the nature of the emergent representations is still unclear. To understand the effect of learning on representations, we investigate fully-connected, wide neural networks learning classification tasks using the Bayesian framework where learning shapes the posterior distribution of the network weights. Consistent with previous findings, our analysis of the feature learning regime (also known as ‘non-lazy’ regime) shows that the networks acquire strong, data-dependent features, denoted as coding schemes, where neuronal responses to each input are dominated by its class membership. Surprisingly, the nature of the coding schemes depends crucially on the neuronal nonlinearity. In linear networks, an analog coding scheme of the task emerges; in nonlinear networks, strong spontaneous symmetry breaking leads to either redundant or sparse coding schemes. Our findings highlight how network properties such as scaling of weights and neuronal nonlinearity can profoundly influence the emergent representations.

Original languageEnglish
Article number3354
JournalNature Communications
Volume16
Issue number1
DOIs
StatePublished - Dec 2025

Bibliographical note

Publisher Copyright:
© The Author(s) 2025.

Fingerprint

Dive into the research topics of 'Coding schemes in neural networks learning classification tasks'. Together they form a unique fingerprint.

Cite this