Cold streams in early massive hot haloes as the main mode of galaxy formation

A. Dekel*, Y. Birnboim, G. Engel, J. Freundlich, T. Goerdt, M. Mumcuoglu, E. Neistein, C. Pichon, R. Teyssier, E. Zinger

*Corresponding author for this work

Research output: Contribution to journalArticlepeer-review

1370 Scopus citations

Abstract

Massive galaxies in the young Universe, ten billion years ago, formed stars at surprising intensities. Although this is commonly attributed to violent mergers, the properties of many of these galaxies are incompatible with such events, showing gas-rich, clumpy, extended rotating disks not dominated by spheroids. Cosmological simulations and clustering theory are used to explore how these galaxies acquired their gas. Here we report that they are 'stream-fed galaxies', formed from steady, narrow, cold gas streams that penetrate the shock-heated media of massive dark matter haloes. A comparison with the observed abundance of star-forming galaxies implies that most of the input gas must rapidly convert to stars. One-third of the stream mass is in gas clumps leading to mergers of mass ratio greater than 1:10, and the rest is in smoother flows. With a merger duty cycle of 0.1, three-quarters of the galaxies forming stars at a given rate are fed by smooth streams. The rarer, submillimetre galaxies that form stars even more intensely are largely merger-induced starbursts. Unlike destructive mergers, the streams are likely to keep the rotating disk configuration intact, although turbulent and broken into giant star-forming clumps that merge into a central spheroid. This stream-driven scenario for the formation of discs and spheroids is an alternative to the merger picture.

Original languageEnglish
Pages (from-to)451-454
Number of pages4
JournalNature
Volume457
Issue number7228
DOIs
StatePublished - 22 Jan 2009

Bibliographical note

Funding Information:
Acknowledgements We acknowledge discussions with N. Bouche, S. M. Faber, R. Genzel, D. Koo, A. Kravtsov, A. Pope, J. R. Primack, J. Prochaska, A. Sternberg and J. Wall. This research was supported by the France–Israel Teamwork in Sciences, the German–Israel Science Foundation, the Israel Science Foundation, a NASA Theory Program at UCSC, and a Minerva fellowship (T.G.). We thank the Barcelona Centro Nacional de Supercomputación for computer resources and technical support. The simulation is part of the Horizon collaboration.

Fingerprint

Dive into the research topics of 'Cold streams in early massive hot haloes as the main mode of galaxy formation'. Together they form a unique fingerprint.

Cite this