Abstract
Various synchronization primitives are described by adding and testing integer vectors, or by using "Petri Nets". A slice represents a local behavior, described by permissible sequences of distinct actions of the system. We present a double characterization of slices defined by various synchronization primitives: In terms of generating sets and dually in terms of commutation properties. A typical form of a commutation property is: The set of sequences of past actions which disallow a certain coming action is closed under certain permutations. The synchronization primitives treated here include various systems which lie between PV and Vector Replacement Systems or Petri Nets.
Original language | English |
---|---|
Pages (from-to) | 379-391 |
Number of pages | 13 |
Journal | Theoretical Computer Science |
Volume | 8 |
Issue number | 3 |
DOIs | |
State | Published - Jun 1979 |
Externally published | Yes |