TY - JOUR
T1 - Competition between ethanol clearance and retinoic acid biosynthesis in the induction of fetal alcohol syndrome
AU - Shabtai, Yehuda
AU - Fainsod, Abraham
N1 - Publisher Copyright:
© 2018 Published by NRC Research Press.
PY - 2018
Y1 - 2018
N2 - Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.
AB - Several models have been proposed to explain the neurodevelopmental syndrome induced by exposure of human embryos to alcohol, which is known as fetal alcohol spectrum disorder (FASD). One of the proposed models suggests a competition for the enzymes required for the biosynthesis of retinoic acid. The outcome of such competition is development under conditions of reduced retinoic acid signaling. Retinoic acid is one of the biologically active metabolites of vitamin A (retinol), and regulates numerous embryonic and differentiation processes. The developmental malformations characteristic of FASD resemble those observed in vitamin A deficiency syndrome as well as from inhibition of retinoic acid biosynthesis or signaling in experimental models. There is extensive biochemical and enzymatic overlap between ethanol clearance and retinoic acid biosynthesis. Several lines of evidence suggest that in the embryo, the competition takes place between acetaldehyde and retinaldehyde for the aldehyde dehydrogenase activity available. In adults, this competition also extends to the alcohol dehydrogenase activity. Ethanol-induced developmental defects can be ameliorated by increasing the levels of retinol, retinaldehyde, or retinaldehyde dehydrogenase. Acetaldehyde inhibits the production of retinoic acid by retinaldehyde dehydrogenase, further supporting the competition model. All of the evidence supports the reduction of retinoic acid signaling as the etiological trigger in the induction of FASD.
KW - Alcohol dehydrogenase
KW - Embryo development
KW - Retinaldehyde dehydrogenase
KW - Vitamin A deficiency
KW - Vitamin A metabolism
UR - http://www.scopus.com/inward/record.url?scp=85045442172&partnerID=8YFLogxK
U2 - 10.1139/bcb-2017-0132
DO - 10.1139/bcb-2017-0132
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.systematicreview???
C2 - 28982012
AN - SCOPUS:85045442172
SN - 0829-8211
VL - 96
SP - 148
EP - 160
JO - Biochemistry and Cell Biology
JF - Biochemistry and Cell Biology
IS - 2
ER -