TY - JOUR
T1 - Complement receptor-3 negatively regulates the phagocytosis of degenerated myelin through tyrosine kinase Syk and cofilin
AU - Hadas, Smadar
AU - Spira, Maya
AU - Hanisch, Uwe Karsten
AU - Reichert, Fanny
AU - Rotshenker, Shlomo
PY - 2012/7/9
Y1 - 2012/7/9
N2 - Background: Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3) is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase) and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin) remodeling (i.e., disassembly and reassembly) by shifting between active unphosphorylated and inactive phosphorylated states.Results: Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin) decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia), which, as we also revealed, are instrumental in myelin phagocytosis.Conclusions: CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive phosphorylated state of cofilin. Self-negative control of phagocytosis by the phagocytic receptor can be useful in protecting phagocytes from excessive phagocytosis (i.e., " overeating" ) during extended exposure to particles that are destined for ingestion.
AB - Background: Intact myelin, which normally surrounds axons, breaks down in Wallerian degeneration following axonal injury and during neurodegenerative diseases such as multiple sclerosis. Clearance of degenerated myelin by phagocytosis is essential since myelin impedes repair and exacerbates damage. CR3 (complement receptor-3) is a principal phagocytic receptor in myelin phagocytosis. We studied how tyrosine kinase Syk (spleen tyrosine kinase) and cofilin control phagocytosis of degenerated myelin by CR3 in microglia and macrophages. Syk is a non-receptor tyrosine kinase that CR3 recruits to convey cellular functions. Cofilin is an actin-depolymerizing protein that controls F-actin (filamentous actin) remodeling (i.e., disassembly and reassembly) by shifting between active unphosphorylated and inactive phosphorylated states.Results: Syk was continuously activated during prolonged phagocytosis. Phagocytosis increased when Syk activity and expression were reduced, suggesting that normally Syk down regulates CR3-mediated myelin phagocytosis. Levels of inactive p-cofilin (phosphorylated cofilin) decreased transiently during prolonged phagocytosis. In contrast, p-cofilin levels decreased continuously when Syk activity and expression were continuously reduced, suggesting that normally Syk advances the inactive state of cofilin. Observations also revealed inverse relationships between levels of phagocytosis and levels of inactive p-cofilin, suggesting that active unphosphorylated cofilin advances phagocytosis. Active cofilin could advance phagocytosis by promoting F-actin remodeling, which supports the production of membrane protrusions (e.g., filopodia), which, as we also revealed, are instrumental in myelin phagocytosis.Conclusions: CR3 both activates and downregulates myelin phagocytosis at the same time. Activation was previously documented. We presently demonstrate that downregulation is mediated through Syk, which advances the inactive phosphorylated state of cofilin. Self-negative control of phagocytosis by the phagocytic receptor can be useful in protecting phagocytes from excessive phagocytosis (i.e., " overeating" ) during extended exposure to particles that are destined for ingestion.
KW - Cofilin
KW - Complement receptor-3
KW - Macrophage
KW - Microglia
KW - Myelin
KW - Phagocytosis
KW - Syk
UR - http://www.scopus.com/inward/record.url?scp=84863511515&partnerID=8YFLogxK
U2 - 10.1186/1742-2094-9-166
DO - 10.1186/1742-2094-9-166
M3 - ???researchoutput.researchoutputtypes.contributiontojournal.article???
C2 - 22776089
AN - SCOPUS:84863511515
SN - 1742-2094
VL - 9
JO - Journal of Neuroinflammation
JF - Journal of Neuroinflammation
M1 - 639
ER -